BlueSCSI_initiator.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "BlueSCSI_config.h"
  8. #include "BlueSCSI_log.h"
  9. #include "BlueSCSI_log_trace.h"
  10. #include "BlueSCSI_initiator.h"
  11. #include <BlueSCSI_platform.h>
  12. #include "SdFat.h"
  13. #include <scsi2sd.h>
  14. extern "C" {
  15. #include <scsi.h>
  16. }
  17. #ifndef PLATFORM_HAS_INITIATOR_MODE
  18. void scsiInitiatorInit()
  19. {
  20. }
  21. void scsiInitiatorMainLoop()
  22. {
  23. }
  24. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  25. uint8_t *bufIn, size_t bufInLen,
  26. const uint8_t *bufOut, size_t bufOutLen)
  27. {
  28. return -1;
  29. }
  30. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  31. {
  32. return false;
  33. }
  34. #else
  35. /*************************************
  36. * High level initiator mode logic *
  37. *************************************/
  38. static struct {
  39. // Bitmap of all drives that have been imaged
  40. uint32_t drives_imaged;
  41. // Is imaging a drive in progress, or are we scanning?
  42. bool imaging;
  43. // Information about currently selected drive
  44. int target_id;
  45. uint32_t sectorsize;
  46. uint32_t sectorcount;
  47. uint32_t sectorcount_all;
  48. uint32_t sectors_done;
  49. uint32_t max_sector_per_transfer;
  50. // Retry information for sector reads.
  51. // If a large read fails, retry is done sector-by-sector.
  52. int retrycount;
  53. uint32_t failposition;
  54. FsFile target_file;
  55. } g_initiator_state;
  56. extern SdFs SD;
  57. // Initialization of initiator mode
  58. void scsiInitiatorInit()
  59. {
  60. scsiHostPhyReset();
  61. g_initiator_state.drives_imaged = 0;
  62. g_initiator_state.imaging = false;
  63. g_initiator_state.target_id = -1;
  64. g_initiator_state.sectorsize = 0;
  65. g_initiator_state.sectorcount = 0;
  66. g_initiator_state.sectors_done = 0;
  67. g_initiator_state.retrycount = 0;
  68. g_initiator_state.failposition = 0;
  69. g_initiator_state.max_sector_per_transfer = 512;
  70. }
  71. // Update progress bar LED during transfers
  72. static void scsiInitiatorUpdateLed()
  73. {
  74. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  75. const int period = 256;
  76. int phase = (millis() % period);
  77. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  78. // Minimum and maximum time to verify that the blink is visible
  79. if (duty < 50) duty = 50;
  80. if (duty > period - 50) duty = period - 50;
  81. if (phase <= duty)
  82. {
  83. LED_ON();
  84. }
  85. else
  86. {
  87. LED_OFF();
  88. }
  89. }
  90. void delay_with_poll(uint32_t ms)
  91. {
  92. uint32_t start = millis();
  93. while ((uint32_t)(millis() - start) < ms)
  94. {
  95. platform_poll();
  96. delay(1);
  97. }
  98. }
  99. // High level logic of the initiator mode
  100. void scsiInitiatorMainLoop()
  101. {
  102. if (g_scsiHostPhyReset)
  103. {
  104. log("Executing BUS RESET after aborted command");
  105. scsiHostPhyReset();
  106. }
  107. if (!g_initiator_state.imaging)
  108. {
  109. // Scan for SCSI drives one at a time
  110. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  111. g_initiator_state.sectors_done = 0;
  112. g_initiator_state.retrycount = 0;
  113. g_initiator_state.max_sector_per_transfer = 512;
  114. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  115. {
  116. delay_with_poll(1000);
  117. uint8_t inquiry_data[36];
  118. LED_ON();
  119. bool startstopok =
  120. scsiTestUnitReady(g_initiator_state.target_id) &&
  121. scsiStartStopUnit(g_initiator_state.target_id, true);
  122. bool readcapok = startstopok &&
  123. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  124. &g_initiator_state.sectorcount,
  125. &g_initiator_state.sectorsize);
  126. bool inquiryok = startstopok &&
  127. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  128. LED_OFF();
  129. if (readcapok)
  130. {
  131. log("SCSI id ", g_initiator_state.target_id,
  132. " capacity ", (int)g_initiator_state.sectorcount,
  133. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  134. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  135. uint64_t total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  136. log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  137. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  138. {
  139. // Note: the FAT32 limit is 4 GiB - 1 byte
  140. log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem");
  141. log("Please reformat the SD card with exFAT format to image this drive fully");
  142. g_initiator_state.sectorcount = (uint32_t)0xFFFFFFFF / g_initiator_state.sectorsize;
  143. log("Will image first 4 GiB - 1 = ", (int)g_initiator_state.sectorcount, " sectors");
  144. }
  145. }
  146. else if (startstopok)
  147. {
  148. log("SCSI id ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  149. log("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  150. g_initiator_state.sectorsize = 512;
  151. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  152. g_initiator_state.max_sector_per_transfer = 128;
  153. }
  154. else
  155. {
  156. debuglog("Failed to connect to SCSI id ", g_initiator_state.target_id);
  157. g_initiator_state.sectorsize = 0;
  158. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  159. }
  160. const char *filename_format = "HD00_imaged.hda";
  161. if (inquiryok)
  162. {
  163. if ((inquiry_data[0] & 0x1F) == 5)
  164. {
  165. filename_format = "CD00_imaged.iso";
  166. }
  167. }
  168. if (g_initiator_state.sectorcount > 0)
  169. {
  170. char filename[32] = {0};
  171. strncpy(filename, filename_format, sizeof(filename) - 1);
  172. filename[2] += g_initiator_state.target_id;
  173. SD.remove(filename);
  174. g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC);
  175. if (!g_initiator_state.target_file.isOpen())
  176. {
  177. log("Failed to open file for writing: ", filename);
  178. return;
  179. }
  180. if (SD.fatType() == FAT_TYPE_EXFAT)
  181. {
  182. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  183. // file if write is interrupted.
  184. log("Preallocating image file");
  185. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  186. }
  187. log("Starting to copy drive data to ", filename);
  188. g_initiator_state.imaging = true;
  189. }
  190. }
  191. }
  192. else
  193. {
  194. // Copy sectors from SCSI drive to file
  195. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  196. {
  197. scsiStartStopUnit(g_initiator_state.target_id, false);
  198. log("Finished imaging drive with id ", g_initiator_state.target_id);
  199. LED_OFF();
  200. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  201. {
  202. log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  203. log("Please reformat the SD card with exFAT format to image this drive fully");
  204. }
  205. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  206. g_initiator_state.imaging = false;
  207. g_initiator_state.target_file.close();
  208. return;
  209. }
  210. scsiInitiatorUpdateLed();
  211. // How many sectors to read in one batch?
  212. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  213. if (numtoread > g_initiator_state.max_sector_per_transfer)
  214. numtoread = g_initiator_state.max_sector_per_transfer;
  215. // Retry sector-by-sector after failure
  216. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  217. numtoread = 1;
  218. uint32_t time_start = millis();
  219. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  220. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  221. g_initiator_state.target_file);
  222. if (!status)
  223. {
  224. log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  225. if (g_initiator_state.retrycount < 5)
  226. {
  227. log("Retrying.. ", g_initiator_state.retrycount, "/5");
  228. delay_with_poll(200);
  229. scsiHostPhyReset();
  230. delay_with_poll(200);
  231. g_initiator_state.retrycount++;
  232. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  233. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  234. {
  235. log("Multiple failures, retrying sector-by-sector");
  236. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  237. }
  238. }
  239. else
  240. {
  241. log("Retry limit exceeded, skipping one sector");
  242. g_initiator_state.retrycount = 0;
  243. g_initiator_state.sectors_done++;
  244. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  245. }
  246. }
  247. else
  248. {
  249. g_initiator_state.retrycount = 0;
  250. g_initiator_state.sectors_done += numtoread;
  251. g_initiator_state.target_file.flush();
  252. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  253. log("SCSI read succeeded, sectors done: ",
  254. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  255. " speed ", speed_kbps, " kB/s");
  256. }
  257. }
  258. }
  259. /*************************************
  260. * Low level command implementations *
  261. *************************************/
  262. int scsiInitiatorRunCommand(int target_id,
  263. const uint8_t *command, size_t cmdLen,
  264. uint8_t *bufIn, size_t bufInLen,
  265. const uint8_t *bufOut, size_t bufOutLen,
  266. bool returnDataPhase)
  267. {
  268. if (!scsiHostPhySelect(target_id))
  269. {
  270. debuglog("------ Target ", target_id, " did not respond");
  271. scsiHostPhyRelease();
  272. return -1;
  273. }
  274. SCSI_PHASE phase;
  275. int status = -1;
  276. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  277. {
  278. platform_poll();
  279. if (phase == MESSAGE_IN)
  280. {
  281. uint8_t dummy = 0;
  282. scsiHostRead(&dummy, 1);
  283. }
  284. else if (phase == MESSAGE_OUT)
  285. {
  286. uint8_t identify_msg = 0x80;
  287. scsiHostWrite(&identify_msg, 1);
  288. }
  289. else if (phase == COMMAND)
  290. {
  291. scsiHostWrite(command, cmdLen);
  292. }
  293. else if (phase == DATA_IN)
  294. {
  295. if (returnDataPhase) return 0;
  296. if (bufInLen == 0)
  297. {
  298. log("DATA_IN phase but no data to receive!");
  299. status = -3;
  300. break;
  301. }
  302. if (scsiHostRead(bufIn, bufInLen) == 0)
  303. {
  304. log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  305. status = -2;
  306. break;
  307. }
  308. }
  309. else if (phase == DATA_OUT)
  310. {
  311. if (returnDataPhase) return 0;
  312. if (bufOutLen == 0)
  313. {
  314. log("DATA_OUT phase but no data to send!");
  315. status = -3;
  316. break;
  317. }
  318. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  319. {
  320. log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  321. status = -2;
  322. break;
  323. }
  324. }
  325. else if (phase == STATUS)
  326. {
  327. uint8_t tmp = -1;
  328. scsiHostRead(&tmp, 1);
  329. status = tmp;
  330. debuglog("------ STATUS: ", tmp);
  331. }
  332. }
  333. scsiHostPhyRelease();
  334. return status;
  335. }
  336. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  337. {
  338. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  339. uint8_t response[8] = {0};
  340. int status = scsiInitiatorRunCommand(target_id,
  341. command, sizeof(command),
  342. response, sizeof(response),
  343. NULL, 0);
  344. if (status == 0)
  345. {
  346. *sectorcount = ((uint32_t)response[0] << 24)
  347. | ((uint32_t)response[1] << 16)
  348. | ((uint32_t)response[2] << 8)
  349. | ((uint32_t)response[3] << 0);
  350. *sectorcount += 1; // SCSI reports last sector address
  351. *sectorsize = ((uint32_t)response[4] << 24)
  352. | ((uint32_t)response[5] << 16)
  353. | ((uint32_t)response[6] << 8)
  354. | ((uint32_t)response[7] << 0);
  355. return true;
  356. }
  357. else if (status == 2)
  358. {
  359. uint8_t sense_key;
  360. scsiRequestSense(target_id, &sense_key);
  361. log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  362. return false;
  363. }
  364. else
  365. {
  366. *sectorcount = *sectorsize = 0;
  367. return false;
  368. }
  369. }
  370. // Execute REQUEST SENSE command to get more information about error status
  371. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  372. {
  373. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  374. uint8_t response[18] = {0};
  375. int status = scsiInitiatorRunCommand(target_id,
  376. command, sizeof(command),
  377. response, sizeof(response),
  378. NULL, 0);
  379. debuglog("RequestSense response: ", bytearray(response, 18));
  380. *sense_key = response[2];
  381. return status == 0;
  382. }
  383. // Execute UNIT START STOP command to load/unload media
  384. bool scsiStartStopUnit(int target_id, bool start)
  385. {
  386. uint8_t command[6] = {0x1B, 0, 0, 0, 0, 0};
  387. uint8_t response[4] = {0};
  388. if (start) command[4] |= 1;
  389. int status = scsiInitiatorRunCommand(target_id,
  390. command, sizeof(command),
  391. response, sizeof(response),
  392. NULL, 0);
  393. if (status == 2)
  394. {
  395. uint8_t sense_key;
  396. scsiRequestSense(target_id, &sense_key);
  397. log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  398. }
  399. return status == 0;
  400. }
  401. // Execute INQUIRY command
  402. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  403. {
  404. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  405. int status = scsiInitiatorRunCommand(target_id,
  406. command, sizeof(command),
  407. inquiry_data, 36,
  408. NULL, 0);
  409. return status == 0;
  410. }
  411. // Execute TEST UNIT READY command and handle unit attention state
  412. bool scsiTestUnitReady(int target_id)
  413. {
  414. for (int retries = 0; retries < 2; retries++)
  415. {
  416. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  417. int status = scsiInitiatorRunCommand(target_id,
  418. command, sizeof(command),
  419. NULL, 0,
  420. NULL, 0);
  421. if (status == 0)
  422. {
  423. return true;
  424. }
  425. else if (status == -1)
  426. {
  427. // No response to select
  428. return false;
  429. }
  430. else if (status == 2)
  431. {
  432. uint8_t sense_key;
  433. scsiRequestSense(target_id, &sense_key);
  434. if (sense_key == 6)
  435. {
  436. uint8_t inquiry[36];
  437. log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  438. scsiInquiry(target_id, inquiry);
  439. }
  440. else if (sense_key == 2)
  441. {
  442. log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  443. scsiStartStopUnit(target_id, true);
  444. }
  445. }
  446. else
  447. {
  448. log("Target ", target_id, " TEST UNIT READY response: ", status);
  449. }
  450. }
  451. return false;
  452. }
  453. // This uses callbacks to run SD and SCSI transfers in parallel
  454. static struct {
  455. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  456. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  457. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  458. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  459. uint32_t bytes_per_sector;
  460. bool all_ok;
  461. } g_initiator_transfer;
  462. static void initiatorReadSDCallback(uint32_t bytes_complete)
  463. {
  464. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  465. {
  466. // How many bytes remaining in the transfer?
  467. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  468. uint32_t len = remain;
  469. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  470. // Select the limit based on total bytes in the transfer.
  471. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  472. // end of SCSI transfer and the SD write completing.
  473. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  474. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  475. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  476. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  477. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  478. if (limit < bytesPerSector) limit = bytesPerSector;
  479. if (len > limit)
  480. {
  481. len = limit;
  482. }
  483. // Split read so that it doesn't wrap around buffer edge
  484. uint32_t bufsize = sizeof(scsiDev.data);
  485. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  486. if (start + len > bufsize)
  487. len = bufsize - start;
  488. // Don't overwrite data that has not yet been written to SD card
  489. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  490. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  491. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  492. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  493. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  494. {
  495. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  496. // transfer to begin.
  497. return;
  498. }
  499. // Keep transfers a multiple of sector size.
  500. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  501. {
  502. len -= len % bytesPerSector;
  503. }
  504. if (len == 0)
  505. return;
  506. // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  507. if (scsiHostRead(&scsiDev.data[start], len) != len)
  508. {
  509. log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  510. g_initiator_transfer.all_ok = false;
  511. }
  512. g_initiator_transfer.bytes_scsi_done += len;
  513. }
  514. }
  515. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  516. {
  517. // Figure out longest continuous block in buffer
  518. uint32_t bufsize = sizeof(scsiDev.data);
  519. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  520. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  521. if (start + len > bufsize) len = bufsize - start;
  522. // Try to do writes in multiple of 512 bytes
  523. // This allows better performance for SD card access.
  524. if (len >= 512) len &= ~511;
  525. // Start writing to SD card and simultaneously reading more from SCSI bus
  526. uint8_t *buf = &scsiDev.data[start];
  527. // debuglog("SD write ", (int)start, " + ", (int)len);
  528. if (use_callback)
  529. {
  530. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  531. }
  532. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  533. if (file.write(buf, len) != len)
  534. {
  535. log("scsiInitiatorReadDataToFile: SD card write failed");
  536. g_initiator_transfer.all_ok = false;
  537. }
  538. platform_set_sd_callback(NULL, NULL);
  539. g_initiator_transfer.bytes_sd += len;
  540. }
  541. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  542. FsFile &file)
  543. {
  544. int status = -1;
  545. if (start_sector < 0xFFFFFF && sectorcount <= 256)
  546. {
  547. // Use READ6 command for compatibility with old SCSI1 drives
  548. uint8_t command[6] = {0x08,
  549. (uint8_t)(start_sector >> 16),
  550. (uint8_t)(start_sector >> 8),
  551. (uint8_t)start_sector,
  552. (uint8_t)sectorcount,
  553. 0x00
  554. };
  555. // Start executing command, return in data phase
  556. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  557. }
  558. else
  559. {
  560. // Use READ10 command for larger number of blocks
  561. uint8_t command[10] = {0x28, 0x00,
  562. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  563. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  564. 0x00,
  565. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  566. 0x00
  567. };
  568. // Start executing command, return in data phase
  569. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  570. }
  571. if (status != 0)
  572. {
  573. uint8_t sense_key;
  574. scsiRequestSense(target_id, &sense_key);
  575. log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  576. scsiHostPhyRelease();
  577. return false;
  578. }
  579. SCSI_PHASE phase;
  580. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  581. g_initiator_transfer.bytes_per_sector = sectorsize;
  582. g_initiator_transfer.bytes_sd = 0;
  583. g_initiator_transfer.bytes_sd_scheduled = 0;
  584. g_initiator_transfer.bytes_scsi_done = 0;
  585. g_initiator_transfer.all_ok = true;
  586. while (true)
  587. {
  588. platform_poll();
  589. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  590. if (phase != DATA_IN && phase != BUS_BUSY)
  591. {
  592. break;
  593. }
  594. // Read next block from SCSI bus if buffer empty
  595. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  596. {
  597. initiatorReadSDCallback(0);
  598. }
  599. else
  600. {
  601. // Write data to SD card and simultaneously read more from SCSI
  602. scsiInitiatorUpdateLed();
  603. scsiInitiatorWriteDataToSd(file, true);
  604. }
  605. }
  606. // Write any remaining buffered data
  607. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  608. {
  609. platform_poll();
  610. scsiInitiatorWriteDataToSd(file, false);
  611. }
  612. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  613. {
  614. log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  615. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  616. g_initiator_transfer.all_ok = false;
  617. }
  618. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  619. {
  620. platform_poll();
  621. if (phase == MESSAGE_IN)
  622. {
  623. uint8_t dummy = 0;
  624. scsiHostRead(&dummy, 1);
  625. }
  626. else if (phase == MESSAGE_OUT)
  627. {
  628. uint8_t identify_msg = 0x80;
  629. scsiHostWrite(&identify_msg, 1);
  630. }
  631. else if (phase == STATUS)
  632. {
  633. uint8_t tmp = 0;
  634. scsiHostRead(&tmp, 1);
  635. status = tmp;
  636. debuglog("------ STATUS: ", tmp);
  637. }
  638. }
  639. scsiHostPhyRelease();
  640. return status == 0 && g_initiator_transfer.all_ok;
  641. }
  642. #endif