123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543 |
- // 1-channel LoRa Gateway for ESP8266
- // Copyright (c) 2016-2020 Maarten Westenberg version for ESP8266
- //
- // based on work done by Thomas Telkamp for Raspberry PI 1ch gateway
- // and many other contributors.
- //
- // All rights reserved. This program and the accompanying materials
- // are made available under the terms of the MIT License
- // which accompanies this distribution, and is available at
- // https://opensource.org/licenses/mit-license.php
- //
- // NO WARRANTY OF ANY KIND IS PROVIDED
- //
- // Author: Maarten Westenberg (mw12554@hotmail.com)
- //
- // This file contains a number of compile-time settings and declarations that are
- // specific to the LoRa rfm95, sx1276, sx1272 radio of the gateway.
- //
- //
- // ------------------------------------------------------------------------------------
- // ----------------------------------------
- // Used by REG_PAYLOAD_LENGTH to set receive payload length
- #define PAYLOAD_LENGTH 0x40 // 64 bytes
- #define MAX_PAYLOAD_LENGTH 0x80 // 128 bytes
- // In order to make the CAD behaviour dynamic we set a variable
- // when the CAD functions are defined. Value of 3 is minimum frequencies a
- // gateway should support to be fully LoRa compliant.
- // For performance reasons, 3 is the maximum as well!
- //
- #define NUM_HOPS 3
- // Do not change these setting for RSSI detection. They are used for CAD
- // Given the correction factor of 157, we can get to -122dB with this rating
- //
- #define RSSI_LIMIT 35 //
- // How long to wait in LoRa mode before using the RSSI value.
- // This period should be as short as possible, yet sufficient
- //
- #define RSSI_WAIT 6 // was 25
- // How long will it take when hopping before a CDONE or CDETD value
- // is present and can be measured.
- //
- #define EVENT_WAIT 15000 // XXX 180520 was 25 milliseconds before CDDETD timeout
- #define DONE_WAIT 1950 // 2000 microseconds (1/500) sec between CDDONE events
- // SPI setting. 8MHz seems to be the max
- #define SPISPEED 8000000 // Set to 8 * 10E6
- // Frequencies
- // Set center frequency. If in doubt, choose the first one, comment out all others
- // Each "real" gateway should support the first 3 frequencies according to LoRa spec.
- // NOTE: This means you have to specify at least 3 frequencies here for the single
- // channel gateway to work.
- struct vector {
- // Upstream messages
- uint32_t upFreq; // 4 bytes
- uint16_t upBW; // 2 bytes
- uint8_t upLo; // 1 bytes
- uint8_t upHi; // 1 bytes
- // Downstream messages
- uint32_t dwnFreq; // 4 bytes Unsigned ubt Frequency
- uint16_t dwnBW; // 2 bytes BW Specification
- uint8_t dwnLo; // 1 bytes Spreading Factor
- uint8_t dwnHi; // 1 bytes
- };
- #ifdef EU863_870
- // This the the EU863_870 format as used in most of Europe
- // It is also the default for most of the single channel gateway work.
- // For each frequency SF7-SF12 are used.
- vector freqs [] =
- {
- { 868100000, 125, 7, 12, 868100000, 125, 7, 12}, // Channel 0, 868.1 MHz/125 primary
- { 868300000, 125, 7, 12, 868300000, 125, 7, 12}, // Channel 1, 868.3 MHz/125 mandatory and (SF7BW250)
- { 868500000, 125, 7, 12, 868500000, 125, 7, 12}, // Channel 2, 868.5 MHz/125 mandatory
- { 867100000, 125, 7, 12, 867100000, 125, 7, 12}, // Channel 3, 867.1 MHz/125 Optional
- { 867300000, 125, 7, 12, 867300000, 125, 7, 12}, // Channel 4, 867.3 MHz/125 Optional
- { 867500000, 125, 7, 12, 867500000, 125, 7, 12}, // Channel 5, 867.5 MHz/125 Optional
- { 867700000, 125, 7, 12, 867700000, 125, 7, 12}, // Channel 6, 867.7 MHz/125 Optional
- { 867900000, 125, 7, 12, 867900000, 125, 7, 12}, // Channel 7, 867.9 MHz/125 Optional
- { 868800000, 125, 7, 12, 868800000, 125, 7, 12}, // Channel 8, 868.9 MHz/125 FSK Only
- { 0, 0 , 0, 0, 869525000, 125, 9, 9} // Channel 9, 869.5 MHz/125 for RX2 responses SF9(10%)
- // TTN defines an additional channel at 869.525 MHz using SF9 for class B. Not used
- };
- #elif defined(EU433)
- // The following 3 frequencies should be defined/used in an EU433
- // environment. The plan is not defined for TTN yet so we use this one.
- vector freqs [] = {
- { 433175000, 125, 7, 12, 433175000, 125, 7, 12}, // Channel 0, 433.175 MHz/125 primary
- { 433375000, 125, 7, 12, 433375000, 125, 7, 12}, // Channel 1, 433.375 MHz primary
- { 433575000, 125, 7, 12, 433575000, 125, 7, 12}, // Channel 2, 433.575 MHz primary
- { 433775000, 125, 7, 12, 433775000, 125, 7, 12}, // Channel 3, 433.775 MHz primary
- { 433975000, 125, 7, 12, 433975000, 125, 7, 12}, // Channel 4, 433.975 MHz primary
- { 434175000, 125, 7, 12, 434175000, 125, 7, 12}, // Channel 5, 434.175 MHz primary
- { 434375000, 125, 7, 12, 434375000, 125, 7, 12}, // Channel 6, 434.375 MHz primary
- { 434575000, 125, 7, 12, 434575000, 125, 7, 12}, // Channel 7, 434.575 MHz primary
- { 434775000, 125, 7, 12, 434775000, 125, 7, 12} // Channel 8, 434.775 MHz primary
- };
- #elif defined(US902_928)
- // The frequency plan for USA is a difficult one. As yout can see, the uplink protocol uses
- // SF7-SF10 and BW125 whereas the downlink protocol uses SF7-SF12 and BW500.
- // Also the number of chanels is not equal.
- vector freqs [] = {
- // Uplink
- { 903900000, 125, 7, 10, 923300000, 500, 7, 12}, // Up Ch 0, SF7BW125 to SF10BW125 primary
- { 904100000, 125, 7, 10, 923900000, 500, 7, 12}, // Up Ch 1, SF7BW125 to SF10BW125
- { 904300000, 125, 7, 10, 924500000, 500, 7, 12}, // Up Ch 2, SF7BW125 to SF10BW125, Dwn SF7-SF12 924,5 BW500
- { 904500000, 125, 7, 10, 925100000, 500, 7, 12}, // Up Ch 3, SF7BW125 to SF10BW125, Dwn SF7-SF12 925,1 BW500
- { 904700000, 125, 7, 10, 925700000, 500, 7, 12}, // Up Ch 3, SF7BW125 to SF10BW125, Dwn SF7-SF12 925,1
- { 904900000, 125, 7, 10, 926300000, 500, 7, 12}, // Up Ch 4, SF7BW125 to SF10BW125, Dwn SF7-SF12
- { 905100000, 125, 7, 10, 926900000, 500, 7, 12}, // Up Ch 5, SF7BW125 to SF10BW125, Dwn SF7-SF12
- { 905300000, 125, 7, 10, 927500000, 500, 7, 12}, // Up Ch 6, SF7BW125 to SF10BW125, Dwn SF7-SF12
- { 904600000, 500, 8, 8, 0 , 0, 0, 00}, // Up Ch 7, SF8BW5000, no Dwn 0 // SFxxxBW500
- };
- #elif defined(AU925_928)
- // Australian plan or TTN/Lora frequencies
- vector freqs [] = {
- { 916800000, 125, 7, 10, 916800000, 125, 7, 12}, // Channel 0, 916.8 MHz primary
- { 917000000, 125, 7, 10, 917000000, 125, 7, 12}, // Channel 1, 917.0 MHz mandatory
- { 917200000, 125, 7, 10, 917200000, 125, 7, 12}, // Channel 2, 917.2 MHz mandatory
- { 917400000, 125, 7, 10, 917400000, 125, 7, 12}, // Channel 3, 917.4 MHz Optional
- { 917600000, 125, 7, 10, 917600000, 125, 7, 12}, // Channel 4, 917.6 MHz Optional
- { 917800000, 125, 7, 10, 917800000, 125, 7, 12}, // Channel 5, 917.8 MHz Optional
- { 918000000, 125, 7, 10, 918000000, 125, 7, 12}, // Channel 6, 918.0 MHz Optional
- { 918200000, 125, 7, 10, 918200000, 125, 7, 12} , // Channel 7, 918.2 MHz Optional
- { 917500000, 500, 8, 8, 0, 0, 0, 0} // Channel 8, 917.5 SF8BW500 MHz Optional Uplink
- };
- #elif defined(CN470_510)
- // China plan for TTN frequencies
- vector freqs [] = {
- { 486300000, 125, 7, 12, 486300000, 125, 7, 12}, // 486.3 - SF7BW125 to SF12BW125
- { 486500000, 125, 7, 12, 486500000, 125, 7, 12}, // 486.5 - SF7BW125 to SF12BW125
- { 486700000, 125, 7, 12, 486700000, 125, 7, 12}, // 486.7 - SF7BW125 to SF12BW125
- { 486900000, 125, 7, 12, 486900000, 125, 7, 12}, // 486.9 - SF7BW125 to SF12BW125
- { 487100000, 125, 7, 12, 487100000, 125, 7, 12}, // 487.1 - SF7BW125 to SF12BW125
- { 487300000, 125, 7, 12, 487300000, 125, 7, 12}, // 487.3 - SF7BW125 to SF12BW125
- { 487500000, 125, 7, 12, 487500000, 125, 7, 12}, // 487.5 - SF7BW125 to SF12BW125
- { 487700000, 125, 7, 12, 487700000, 125, 7, 12} // 487.7 - SF7BW125 to SF12BW125
- };
- #elif defined(IN865_867)
- vector freqs [] = {
- { 865062500, 125, 7, 12, 865062500, 125, 7, 12}, // And RX1
- { 865402500, 125, 7, 12, 865402500, 125, 7, 12},
- { 865985000, 125, 7, 12, 865985000, 125, 7, 12},
- { 0, 0, 0, 0, 866550000, 125, 10, 10} // RX2
- };
- #else
- vector freqs [] = {
- // Print an Error, Not supported
- # error "Sorry, but your frequency plan is not supported"
- };
- #endif
- // Set the structure for spreading factor
- enum sf_t { SF6=6, SF7, SF8, SF9, SF10, SF11, SF12 };
- // The state of the receiver. See Semtech Datasheet (rev 4, March 2015) page 43
- // The _state is of the enum type (and should be cast when used as a number)
- enum state_t { S_INIT=0, S_SCAN, S_CAD, S_RX, S_TX, S_TXDONE};
- volatile state_t _state=S_INIT;
- volatile uint8_t _event=0;
- // rssi is measured at specific moments and reported on others
- // so we need to store the current value we like to work with
- uint8_t _rssi;
- uint32_t nowTime=0;
- uint32_t msgTime=0;
- uint32_t hopTime=0;
- uint32_t detTime=0;
- #if _PIN_OUT==1
- // ----------------------------------------------------------------------------
- // Definition of the GPIO pins used by the Gateway for Hallard type boards
- //
- struct pins {
- uint8_t dio0=15; // GPIO15 / D8. For the Hallard board shared between DIO0/DIO1/DIO2
- uint8_t dio1=15; // GPIO15 / D8. Used for CAD, may or not be shared with DIO0
- uint8_t dio2=15; // GPIO15 / D8. Used for frequency hopping, don't care
- uint8_t ss=16; // GPIO16 / D0. Select pin connected to GPIO16 / D0
- uint8_t rst=0; // GPIO 0 / D3. Reset pin not used
- // MISO 12 / D6
- // MOSI 13 / D7
- // CLK 14 / D5
- } pins;
- #elif _PIN_OUT==2
- // ----------------------------------------------------------------------------
- // For ComResult gateway PCB use the following settings
- struct pins {
- uint8_t dio0=5; // GPIO5 / D1. Dio0 used for one frequency and one SF
- uint8_t dio1=4; // GPIO4 / D2. Used for CAD, may or not be shared with DIO0
- uint8_t dio2=0; // GPIO0 / D3. Used for frequency hopping, don't care
- uint8_t ss=15; // GPIO15 / D8. Select pin connected to GPIO15
- uint8_t rst=0; // GPIO0 / D3. Reset pin not used
- } pins;
- #elif _PIN_OUT==3
- // ----------------------------------------------------------------------------
- // For ESP32/Wemos based board
- // SCK == GPIO5/ PIN5
- // SS == GPIO18/PIN18
- // MISO == GPIO19/ PIN19
- // MOSI == GPIO27/ PIN27
- // RST == GPIO14/ PIN14
- // This Pinning is not used and is under construction
- struct pins {
- uint8_t dio0=26; // GPIO26 / Dio0 used for one frequency and one SF
- uint8_t dio1=26; // GPIO26 / Used for CAD, may or not be shared with DIO0
- uint8_t dio2=26; // GPI2O6 / Used for frequency hopping, don't care
- uint8_t ss=18; // GPIO18 / Dx. Select pin connected to GPIO18
- uint8_t rst=14; // GPIO0 / D3. Reset pin not used
- } pins;
- #elif _PIN_OUT==4
- // ----------------------------------------------------------------------------
- // For ESP32/TTGO based board.
- // SCK == GPIO5/ PIN5
- // SS == GPIO18/ PIN18 CS
- // MISO == GPIO19/ PIN19
- // MOSI == GPIO27/ PIN27
- // RST == GPIO14/ PIN14
- struct pins {
- uint8_t dio0=26; // GPIO26 / Dio0 used for one frequency and one SF
- uint8_t dio1=33; // GPIO33 / Used for CAD, may or not be shared with DIO0
- uint8_t dio2=32; // GPIO32 / Used for frequency hopping, don't care
- uint8_t ss=18; // GPIO18 / CS. Select pin connected to GPIO18
- uint8_t rst=14; // GPIO14 / D3. Reset pin not used
- } pins;
- #define SCK 5
- #define MISO 19
- #define MOSI 27
- #define RST 14
- #define SS 18
- #if _GPS==1
- #define GPS_RX 15
- #define GPS_TX 12
- #endif // _GPS
- #else
- // ----------------------------------------------------------------------------
- // Use your own pin definitions, and comment #error line below
- // MISO 12 / D6
- // MOSI 13 / D7
- // CLK 14 / D5
- // SS 16 / D0
- #error "Pin Definitions _PIN_OUT must be defined in loraModem.h"
- #endif
- // stat_t contains the statistics that are kept for a message.
- // Each time a message is received or sent the statistics are updated.
- // In case _STATISTICS==1 we define the last _MAXSTAT messages as statistics
- struct stat_t {
- time_t tmst; // Time since 1970 in seconds
- uint32_t node; // 4-byte DEVaddr (the only one known to gateway)
- uint8_t ch; // Channel index to freqs array
- uint8_t sf;
- #if RSSI==1
- int8_t rssi; // XXX Can be < -128
- #endif
- int8_t prssi; // XXX Can be < -128
- #if _LOCALSERVER==1
- uint8_t data[23]; // For memory purposes, only 23 chars
- uint8_t datal; // Length of decoded message 1 char
- #endif
- } stat_t;
- #if _STATISTICS >= 1
- // statc_c contains the statistic that are gateway related and not per
- // message. Example: Number of messages received on SF7 or number of (re) boots
- // So where statr contains the statistics gathered per packet the statc_c
- // contains general statistics of the node
- struct stat_c {
- uint32_t msg_ok;
- uint32_t msg_ttl;
- uint32_t msg_down;
- uint32_t msg_sens;
- #if _STATISTICS >= 2 // Only if we explicitly set it higher
- uint32_t sf7, sf8, sf9; // Spreading factor 7, 8, 9 statistics/Count
- uint32_t sf10, sf11, sf12; // Spreading factor 10, 11, 12
-
- // If _STATISTICS is 3, we add statistics about the channel
- // When only one channel is used, we normally know the spread of
- // statistics, but when HOP mode is selected we migth want to add this info
- #if _STATISTICS >=3
- uint32_t msg_ok_0, msg_ok_1, msg_ok_2;
- uint32_t msg_ttl_0, msg_ttl_1, msg_ttl_2;
- uint32_t msg_down_0, msg_down_1, msg_down_2;
- uint32_t msg_sens_0, msg_sens_1, msg_sens_2;
- uint32_t sf7_0, sf7_1, sf7_2;
- uint32_t sf8_0, sf8_1, sf8_2;
- uint32_t sf9_0, sf9_1, sf9_2;
- uint32_t sf10_0, sf10_1, sf10_2;
- uint32_t sf11_0, sf11_1, sf11_2;
- uint32_t sf12_0, sf12_1, sf12_2;
- #endif //3
-
- uint16_t boots; // Number of boots
- uint16_t resets;
- #endif // 2
- } stat_c;
- struct stat_c statc;
- // History of received uplink and downlink messages from nodes
- struct stat_t statr[_MAXSTAT];
- #else // _STATISTICS==0
- struct stat_t statr[1]; // Always have at least one element to store in
- #endif
- // Define the payload structure used to separate interrupt and SPI
- // processing from the loop() part
- uint8_t payLoad[128]; // Payload i
- struct LoraBuffer {
- uint8_t * payLoad;
- uint8_t payLength;
- uint32_t tmst; // in millis()
- uint8_t sfTx;
- uint8_t powe;
- uint32_t fff;
- uint8_t crc;
- uint8_t iiq;
- } LoraDown;
- // Up buffer (from Lora sensor to UDP)
- // This struct contains all data of the buffer received from devices to gateway
- struct LoraUp {
- uint8_t payLoad[128];
- uint8_t payLength;
- int prssi;
- int32_t snr;
- int rssicorr;
- uint8_t sf;
- } LoraUp;
- // ============================================================================
- // Set all definitions for Gateway
- // ============================================================================
- // Register definitions. These are the addresses of the RFM95, SX1276 that we
- // need to set in the program.
- #define REG_FIFO 0x00 // rw FIFO address
- #define REG_OPMODE 0x01
- // Register 2 to 5 are unused for LoRa
- #define REG_FRF_MSB 0x06
- #define REG_FRF_MID 0x07
- #define REG_FRF_LSB 0x08
- #define REG_PAC 0x09
- #define REG_PARAMP 0x0A
- #define REG_LNA 0x0C
- #define REG_FIFO_ADDR_PTR 0x0D // rw SPI interface address pointer in FIFO data buffer
- #define REG_FIFO_TX_BASE_AD 0x0E // rw write base address in FIFO data buffer for TX modulator
- #define REG_FIFO_RX_BASE_AD 0x0F // rw read base address in FIFO data buffer for RX demodulator (0x00)
- #define REG_FIFO_RX_CURRENT_ADDR 0x10 // r Address of last packet received
- #define REG_IRQ_FLAGS_MASK 0x11
- #define REG_IRQ_FLAGS 0x12
- #define REG_RX_NB_BYTES 0x13
- #define REG_PKT_SNR_VALUE 0x19
- #define REG_PKT_RSSI 0x1A // latest package
- #define REG_RSSI 0x1B // Current RSSI, section 6.4, or 5.5.5
- #define REG_HOP_CHANNEL 0x1C
- #define REG_MODEM_CONFIG1 0x1D
- #define REG_MODEM_CONFIG2 0x1E
- #define REG_SYMB_TIMEOUT_LSB 0x1F
- #define REG_PAYLOAD_LENGTH 0x22
- #define REG_MAX_PAYLOAD_LENGTH 0x23
- #define REG_HOP_PERIOD 0x24
- #define REG_MODEM_CONFIG3 0x26
- #define REG_RSSI_WIDEBAND 0x2C
- #define REG_INVERTIQ 0x33
- #define REG_DET_TRESH 0x37 // SF6
- #define REG_SYNC_WORD 0x39
- #define REG_TEMP 0x3C
- #define REG_DIO_MAPPING_1 0x40
- #define REG_DIO_MAPPING_2 0x41
- #define REG_VERSION 0x42
- #define REG_PADAC 0x5A
- #define REG_PADAC_SX1272 0x5A
- #define REG_PADAC_SX1276 0x4D
- // ----------------------------------------
- // opModes
- #define SX72_MODE_SLEEP 0x80
- #define SX72_MODE_STANDBY 0x81
- #define SX72_MODE_FSTX 0x82
- #define SX72_MODE_TX 0x83 // 0x80 | 0x03
- #define SX72_MODE_RX_CONTINUOS 0x85
- // ----------------------------------------
- // LMIC Constants for radio registers
- #define OPMODE_LORA 0x80
- #define OPMODE_MASK 0x07
- #define OPMODE_SLEEP 0x00
- #define OPMODE_STANDBY 0x01
- #define OPMODE_FSTX 0x02
- #define OPMODE_TX 0x03
- #define OPMODE_FSRX 0x04
- #define OPMODE_RX 0x05
- #define OPMODE_RX_SINGLE 0x06
- #define OPMODE_CAD 0x07
- // ----------------------------------------
- // LOW NOISE AMPLIFIER
- #define LNA_MAX_GAIN 0x23 // Max gain 0x20 | Boost 0x03
- #define LNA_OFF_GAIN 0x00
- #define LNA_LOW_GAIN 0x20
- // CONF REG
- #define REG1 0x0A
- #define REG2 0x84
- // ----------------------------------------
- // MC1 sx1276 RegModemConfig1
- #define SX1276_MC1_BW_125 0x70
- #define SX1276_MC1_BW_250 0x80
- #define SX1276_MC1_BW_500 0x90
- #define SX1276_MC1_CR_4_5 0x02 // sx1276
- #define SX1276_MC1_CR_4_6 0x04
- #define SX1276_MC1_CR_4_7 0x06
- #define SX1276_MC1_CR_4_8 0x08
- #define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01
- #define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
- // ----------------------------------------
- // MC2 definitions
- #define SX72_MC2_FSK 0x00
- #define SX72_MC2_SF7 0x70 // SF7 == 0x07, so (SF7<<4) == SX7_MC2_SF7
- #define SX72_MC2_SF8 0x80
- #define SX72_MC2_SF9 0x90
- #define SX72_MC2_SF10 0xA0
- #define SX72_MC2_SF11 0xB0
- #define SX72_MC2_SF12 0xC0
- // ----------------------------------------
- // MC3
- #define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
- #define SX1276_MC3_AGCAUTO 0x04
- // ----------------------------------------
- // FRF
- #define FRF_MSB 0xD9 // 868.1 MHz
- #define FRF_MID 0x06
- #define FRF_LSB 0x66
- // ----------------------------------------
- // DIO function mappings D0D1D2D3
- #define MAP_DIO0_LORA_RXDONE 0x00 // 00------ bit 7 and 6
- #define MAP_DIO0_LORA_TXDONE 0x40 // 01------
- #define MAP_DIO0_LORA_CADDONE 0x80 // 10------
- #define MAP_DIO0_LORA_NOP 0xC0 // 11------
- #define MAP_DIO1_LORA_RXTOUT 0x00 // --00---- bit 5 and 4
- #define MAP_DIO1_LORA_FCC 0x10 // --01----
- #define MAP_DIO1_LORA_CADDETECT 0x20 // --10----
- #define MAP_DIO1_LORA_NOP 0x30 // --11----
- #define MAP_DIO2_LORA_FCC0 0x00 // ----00-- bit 3 and 2
- #define MAP_DIO2_LORA_FCC1 0x04 // ----01-- bit 3 and 2
- #define MAP_DIO2_LORA_FCC2 0x08 // ----10-- bit 3 and 2
- #define MAP_DIO2_LORA_NOP 0x0C // ----11-- bit 3 and 2
- #define MAP_DIO3_LORA_CADDONE 0x00 // ------00 bit 1 and 0
- #define MAP_DIO3_LORA_HEADER 0x01 // ------01
- #define MAP_DIO3_LORA_CRC 0x02 // ------10
- #define MAP_DIO3_LORA_NOP 0x03 // ------11
- // FSK specific
- #define MAP_DIO0_FSK_READY 0x00 // 00------ (packet sent / payload ready)
- #define MAP_DIO1_FSK_NOP 0x30 // --11----
- #define MAP_DIO2_FSK_TXNOP 0x04 // ----01--
- #define MAP_DIO2_FSK_TIMEOUT 0x08 // ----10--
- // ----------------------------------------
- // Bits masking the corresponding IRQs from the radio
- #define IRQ_LORA_RXTOUT_MASK 0x80 // RXTOUT
- #define IRQ_LORA_RXDONE_MASK 0x40 // RXDONE after receiving the header and CRC, we receive payload part
- #define IRQ_LORA_CRCERR_MASK 0x20 // CRC error detected. Note that RXDONE will also be set
- #define IRQ_LORA_HEADER_MASK 0x10 // valid HEADER mask. This interrupt is first when receiving a message
- #define IRQ_LORA_TXDONE_MASK 0x08 // End of TRansmission
- #define IRQ_LORA_CDDONE_MASK 0x04 // CDDONE
- #define IRQ_LORA_FHSSCH_MASK 0x02
- #define IRQ_LORA_CDDETD_MASK 0x01 // Detect preamble channel
- // ----------------------------------------
- // Definitions for UDP message arriving from server
- #define PROTOCOL_VERSION 0x01
- #define PKT_PUSH_DATA 0x00
- #define PKT_PUSH_ACK 0x01
- #define PKT_PULL_DATA 0x02
- #define PKT_PULL_RESP 0x03
- #define PKT_PULL_ACK 0x04
- #define PKT_TX_ACK 0x05
- #define MGT_RESET 0x15 // Not a LoRa Gateway Spec message
- #define MGT_SET_SF 0x16
- #define MGT_SET_FREQ 0x17
|