123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- # greaseweazle/track.py
- #
- # Written & released by Keir Fraser <keir.xen@gmail.com>
- #
- # This is free and unencumbered software released into the public domain.
- # See the file COPYING for more details, or visit <http://unlicense.org>.
- import binascii
- import itertools as it
- from bitarray import bitarray
- from greaseweazle.flux import WriteoutFlux
- from greaseweazle import optimised
- # A pristine representation of a track, from a codec and/or a perfect image.
- class MasterTrack:
- @property
- def bitrate(self):
- return len(self.bits) / self.time_per_rev
- # bits: Track bitcell data, aligned to the write splice (bitarray or bytes)
- # time_per_rev: Time per revolution, in seconds (float)
- # bit_ticks: Per-bitcell time values, in unitless 'ticks'
- # splice: Location of the track splice, in bitcells, after the index
- # weak: List of (start, length) weak ranges
- def __init__(self, bits, time_per_rev, bit_ticks=None, splice=0, weak=[]):
- if isinstance(bits, bytes):
- self.bits = bitarray(endian='big')
- self.bits.frombytes(bits)
- else:
- self.bits = bits
- self.time_per_rev = time_per_rev
- self.bit_ticks = bit_ticks
- self.splice = splice
- self.weak = weak
- def __str__(self):
- s = "\nMaster Track: splice @ %d\n" % self.splice
- s += (" %d bits, %.1f kbit/s"
- % (len(self.bits), self.bitrate))
- if self.bit_ticks:
- s += " (variable)"
- s += ("\n %.1f ms / rev (%.1f rpm)"
- % (self.time_per_rev * 1000, 60 / self.time_per_rev))
- if len(self.weak) > 0:
- s += "\n %d weak range" % len(self.weak)
- if len(self.weak) > 1: s += "s"
- s += ": " + ", ".join(str(n) for _,n in self.weak) + " bits"
- #s += str(binascii.hexlify(self.bits.tobytes()))
- return s
- def flux_for_writeout(self, cue_at_index=True):
- return self.flux(for_writeout=True, cue_at_index=cue_at_index)
- def flux(self, for_writeout=False, cue_at_index=True):
- # We're going to mess with the track data, so take a copy.
- bits = self.bits.copy()
- bitlen = len(bits)
- # Also copy the bit_ticks array (or create a dummy one), and remember
- # the total ticks that it contains.
- bit_ticks = self.bit_ticks.copy() if self.bit_ticks else [1] * bitlen
- ticks_to_index = sum(bit_ticks)
- # Weak regions need special processing for correct flux representation.
- for s,n in self.weak:
- e = s + n
- assert 0 < s < e < bitlen
- pattern = bitarray(endian="big")
- if n < 400:
- # Short weak regions are written with no flux transitions.
- # Actually we insert a flux transition every 32 bitcells, else
- # we risk triggering Greaseweazle's No Flux Area generator.
- pattern.frombytes(b"\x80\x00\x00\x00")
- bits[s:e] = (pattern * (n//32+1))[:n]
- else:
- # Long weak regions we present a fuzzy clock bit in an
- # otherwise normal byte (16 bits MFM). The byte may be
- # interpreted as
- # MFM 0001001010100101 = 12A5 = byte 0x43, or
- # MFM 0001001010010101 = 1295 = byte 0x47
- pattern.frombytes(b"\x12\xA5")
- bits[s:e] = (pattern * (n//16+1))[:n]
- for i in range(0, n-10, 16):
- x, y = bit_ticks[s+i+10], bit_ticks[s+i+11]
- bit_ticks[s+i+10], bit_ticks[s+i+11] = x+y*0.5, y*0.5
- # To prevent corrupting a preceding sync word by effectively
- # starting the weak region early, we start with a 1 if we just
- # clocked out a 0.
- bits[s] = not bits[s-1]
- # Similarly modify the last bit of the weak region.
- bits[e-1] = not(bits[e-2] or bits[e])
- if cue_at_index:
- # Rotate data to start at the index.
- index = -self.splice % bitlen
- if index != 0:
- bits = bits[index:] + bits[:index]
- bit_ticks = bit_ticks[index:] + bit_ticks[:index]
- splice_at_index = index < 4 or bitlen - index < 4
- else:
- splice_at_index = False
- if not for_writeout:
- # Do not extend the track for reliable writeout to disk.
- pass
- elif not cue_at_index:
- # We write the track wherever it may fall (uncued).
- # We stretch the track with extra header gap bytes, in case the
- # drive spins slow and we need more length to create an overlap.
- # Thus if the drive spins slow, the track gets a longer header.
- pos = 4
- # We stretch by 10 percent, which is way more than enough.
- rep = bitlen // (10 * 32)
- bit_ticks = bit_ticks[pos:pos+32] * rep + bit_ticks[pos:]
- bits = bits[pos:pos+32] * rep + bits[pos:]
- elif splice_at_index:
- # Splice is at the index (or within a few bitcells of it).
- # We stretch the track with extra footer gap bytes, in case the
- # drive motor spins slower than expected and we need more filler
- # to get us to the index pulse (where the write will terminate).
- # Thus if the drive spins slow, the track gets a longer footer.
- pos = (self.splice - 4) % bitlen
- # We stretch by 10 percent, which is way more than enough.
- rep = bitlen // (10 * 32)
- bit_ticks = bit_ticks[:pos] + bit_ticks[pos-32:pos] * rep
- bits = bits[:pos] + bits[pos-32:pos] * rep
- else:
- # Splice is not at the index. We will write more than one
- # revolution, and terminate the second revolution at the splice.
- # For the first revolution we repeat the track header *backwards*
- # to the very start of the write. This is in case the drive motor
- # spins slower than expected and the write ends before the original
- # splice position.
- # Thus if the drive spins slow, the track gets a longer header.
- bit_ticks += bit_ticks[:self.splice-4]
- bits += bits[:self.splice-4]
- pos = self.splice+4
- fill_pattern = bits[pos:pos+32]
- while pos >= 32:
- pos -= 32
- bits[pos:pos+32] = fill_pattern
- # Convert the stretched track data into flux.
- bit_ticks_i = iter(bit_ticks)
- flux_list = []
- flux_ticks = 0
- for bit in bits:
- flux_ticks += next(bit_ticks_i)
- if bit:
- flux_list.append(flux_ticks)
- flux_ticks = 0
- if flux_ticks and for_writeout:
- flux_list.append(flux_ticks)
- # Package up the flux for return.
- flux = WriteoutFlux(ticks_to_index, flux_list,
- ticks_to_index / self.time_per_rev,
- index_cued = cue_at_index,
- terminate_at_index = splice_at_index)
- return flux
- # Track data generated from flux.
- class RawTrack:
- def __init__(self, clock, data):
- self.clock = clock
- self.clock_max_adj = 0.10
- self.pll_period_adj = 0.05
- self.pll_phase_adj = 0.60
- self.bitarray = bitarray(endian='big')
- self.timearray = []
- self.revolutions = []
- self.import_flux_data(data)
- def __str__(self):
- s = "\nRaw Track: %d revolutions\n" % len(self.revolutions)
- for rev in range(len(self.revolutions)):
- b, _ = self.get_revolution(rev)
- s += "Revolution %u (%u bits): " % (rev, len(b))
- s += str(binascii.hexlify(b.tobytes())) + "\n"
- b = self.bitarray[sum(self.revolutions):]
- s += "Tail (%u bits): " % (len(b))
- s += str(binascii.hexlify(b.tobytes())) + "\n"
- return s[:-1]
- def get_revolution(self, nr):
- start = sum(self.revolutions[:nr])
- end = start + self.revolutions[nr]
- return self.bitarray[start:end], self.timearray[start:end]
- def get_all_data(self):
- return self.bitarray, self.timearray
- def import_flux_data(self, data):
- flux = data.flux()
- freq = flux.sample_freq
- clock = self.clock
- clock_min = self.clock * (1 - self.clock_max_adj)
- clock_max = self.clock * (1 + self.clock_max_adj)
- index_iter = it.chain(iter(map(lambda x: x/freq, flux.index_list)),
- [float('inf')])
- # Make sure there's enough time in the flux list to cover all
- # revolutions by appending a "large enough" final flux value.
- tail = max(0, sum(flux.index_list) - sum(flux.list) + clock*freq*2)
- flux_iter = it.chain(flux.list, [tail])
- try:
- optimised.flux_to_bitcells(
- self.bitarray, self.timearray, self.revolutions,
- index_iter, flux_iter,
- freq, clock, clock_min, clock_max,
- self.pll_period_adj, self.pll_phase_adj)
- except AttributeError:
- flux_to_bitcells(
- self.bitarray, self.timearray, self.revolutions,
- index_iter, flux_iter,
- freq, clock, clock_min, clock_max,
- self.pll_period_adj, self.pll_phase_adj)
-
- def flux_to_bitcells(bit_array, time_array, revolutions,
- index_iter, flux_iter,
- freq, clock_centre, clock_min, clock_max,
- pll_period_adj, pll_phase_adj):
- nbits = 0
- ticks = 0.0
- clock = clock_centre
- to_index = next(index_iter)
- for x in flux_iter:
- # Gather enough ticks to generate at least one bitcell.
- ticks += x / freq
- if ticks < clock/2:
- continue
- # Clock out zero or more 0s, followed by a 1.
- zeros = 0
- while True:
- # Check if we cross the index mark.
- to_index -= clock
- if to_index < 0:
- revolutions.append(nbits)
- nbits = 0
- to_index += next(index_iter)
- nbits += 1
- ticks -= clock
- time_array.append(clock)
- if ticks >= clock/2:
- zeros += 1
- bit_array.append(False)
- else:
- bit_array.append(True)
- break
- # PLL: Adjust clock frequency according to phase mismatch.
- if zeros <= 3:
- # In sync: adjust clock by a fraction of the phase mismatch.
- clock += ticks * pll_period_adj
- else:
- # Out of sync: adjust clock towards centre.
- clock += (clock_centre - clock) * pll_period_adj
- # Clamp the clock's adjustment range.
- clock = min(max(clock, clock_min), clock_max)
- # PLL: Adjust clock phase according to mismatch.
- new_ticks = ticks * (1 - pll_phase_adj)
- time_array[-1] += ticks - new_ticks
- ticks = new_ticks
- # Local variables:
- # python-indent: 4
- # End:
|