| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 | # greaseweazle/track.py## Written & released by Keir Fraser <keir.xen@gmail.com>## This is free and unencumbered software released into the public domain.# See the file COPYING for more details, or visit <http://unlicense.org>.import binasciiimport itertools as itfrom bitarray import bitarrayfrom greaseweazle.flux import WriteoutFluxfrom greaseweazle import optimised# Precompensation to apply to a MasterTrack for writeout.class Precomp:    MFM = 0    FM  = 1    GCR = 2    TYPESTRING = [ 'MFM', 'FM', 'GCR' ]    def __str__(self):        return "Precomp: %s, %dns" % (Precomp.TYPESTRING[self.type], self.ns)    def __init__(self, type, ns):        self.type = type        self.ns = ns    def apply(self, bits, bit_ticks, scale):        t = self.ns * scale        if self.type == Precomp.MFM:            for i in bits.itersearch(bitarray('10100', endian='big')):                bit_ticks[i+2] -= t                bit_ticks[i+3] += t            for i in bits.itersearch(bitarray('00101', endian='big')):                bit_ticks[i+2] += t                bit_ticks[i+3] -= t        # This is primarily for GCR and FM which permit adjacent 1s (and        # have correspondingly slower bit times). However it may be useful        # for illegal MFM sequences too, especially on Amiga (custom syncwords,        # 4us-bitcell tracks). Normal MFM should not trigger these patterns.        for i in bits.itersearch(bitarray('110', endian='big')):            bit_ticks[i+1] -= t            bit_ticks[i+2] += t        for i in bits.itersearch(bitarray('011', endian='big')):            bit_ticks[i+1] += t            bit_ticks[i+2] -= t# A pristine representation of a track, from a codec and/or a perfect image.class MasterTrack:    @property    def bitrate(self):        return len(self.bits) / self.time_per_rev    # bits: Track bitcell data, aligned to the write splice (bitarray or bytes)    # time_per_rev: Time per revolution, in seconds (float)    # bit_ticks: Per-bitcell time values, in unitless 'ticks'    # splice: Location of the track splice, in bitcells, after the index    # weak: List of (start, length) weak ranges    def __init__(self, bits, time_per_rev, bit_ticks=None, splice=0, weak=[]):        if isinstance(bits, bytes):            self.bits = bitarray(endian='big')            self.bits.frombytes(bits)        else:            self.bits = bits        self.time_per_rev = time_per_rev        self.bit_ticks = bit_ticks        self.splice = splice        self.weak = weak        self.precomp = None        self.force_random_weak = True    def __str__(self):        s = "\nMaster Track: splice @ %d\n" % self.splice        s += (" %d bits, %.1f kbit/s"              % (len(self.bits), self.bitrate))        if self.bit_ticks:            s += " (variable)"        s += ("\n %.1f ms / rev (%.1f rpm)"              % (self.time_per_rev * 1000, 60 / self.time_per_rev))        if len(self.weak) > 0:            s += "\n %d weak range" % len(self.weak)            if len(self.weak) > 1: s += "s"            s += ": " + ", ".join(str(n) for _,n in self.weak) + " bits"        #s += str(binascii.hexlify(self.bits.tobytes()))        return s    def flux_for_writeout(self, cue_at_index=True):        return self.flux(for_writeout=True, cue_at_index=cue_at_index)    def flux(self, for_writeout=False, cue_at_index=True):        # We're going to mess with the track data, so take a copy.        bits = self.bits.copy()        bitlen = len(bits)        # Also copy the bit_ticks array (or create a dummy one), and remember        # the total ticks that it contains.        bit_ticks = self.bit_ticks.copy() if self.bit_ticks else [1] * bitlen        ticks_to_index = sum(bit_ticks)        # Weak regions need special processing for correct flux representation.        for s,n in self.weak:            e = s + n            assert 0 < s < e < bitlen            pattern = bitarray(endian="big")            if n < 400 or self.force_random_weak:                # Short weak regions are written with no flux transitions.                # Actually we insert a flux transition every 32 bitcells, else                # we risk triggering Greaseweazle's No Flux Area generator.                pattern.frombytes(b"\x80\x00\x00\x00")                bits[s:e] = (pattern * (n//32+1))[:n]            else:                # Long weak regions we present a fuzzy clock bit in an                # otherwise normal byte (16 bits MFM). The byte may be                # interpreted as                # MFM 0001001010100101 = 12A5 = byte 0x43, or                # MFM 0001001010010101 = 1295 = byte 0x47                pattern.frombytes(b"\x12\xA5")                bits[s:e] = (pattern * (n//16+1))[:n]                for i in range(0, n-10, 16):                    x, y = bit_ticks[s+i+10], bit_ticks[s+i+11]                    bit_ticks[s+i+10], bit_ticks[s+i+11] = x+y*0.5, y*0.5            # To prevent corrupting a preceding sync word by effectively            # starting the weak region early, we start with a 1 if we just            # clocked out a 0.            bits[s] = not bits[s-1]            # Similarly modify the last bit of the weak region.            bits[e-1] = not(bits[e-2] or bits[e])        if cue_at_index:            # Rotate data to start at the index.            index = -self.splice % bitlen            if index != 0:                bits = bits[index:] + bits[:index]                bit_ticks = bit_ticks[index:] + bit_ticks[:index]            splice_at_index = index < 4 or bitlen - index < 4        else:            splice_at_index = False        if not for_writeout:            # Do not extend the track for reliable writeout to disk.            pass        elif not cue_at_index:            # We write the track wherever it may fall (uncued).            # We stretch the track with extra header gap bytes, in case the            # drive spins slow and we need more length to create an overlap.            # Thus if the drive spins slow, the track gets a longer header.            pos = 4            # We stretch by 10 percent, which is way more than enough.            rep = bitlen // (10 * 32)            bit_ticks = bit_ticks[pos:pos+32] * rep + bit_ticks[pos:]            bits = bits[pos:pos+32] * rep + bits[pos:]        elif splice_at_index:            # Splice is at the index (or within a few bitcells of it).            # We stretch the track with extra footer gap bytes, in case the            # drive motor spins slower than expected and we need more filler            # to get us to the index pulse (where the write will terminate).            # Thus if the drive spins slow, the track gets a longer footer.            pos = (self.splice - 4) % bitlen            # We stretch by 10 percent, which is way more than enough.            rep = bitlen // (10 * 32)            bit_ticks = bit_ticks[:pos] + bit_ticks[pos-32:pos] * rep            bits = bits[:pos] + bits[pos-32:pos] * rep        else:            # Splice is not at the index. We will write more than one            # revolution, and terminate the second revolution at the splice.            # For the first revolution we repeat the track header *backwards*            # to the very start of the write. This is in case the drive motor            # spins slower than expected and the write ends before the original            # splice position.            # Thus if the drive spins slow, the track gets a longer header.            bit_ticks += bit_ticks[:self.splice-4]            bits += bits[:self.splice-4]            pos = self.splice+4            fill_pattern = bits[pos:pos+32]            while pos >= 32:                pos -= 32                bits[pos:pos+32] = fill_pattern        if for_writeout and self.precomp is not None:            self.precomp.apply(bits, bit_ticks,                               ticks_to_index / (self.time_per_rev*1e9))        # Convert the stretched track data into flux.        bit_ticks_i = iter(bit_ticks)        flux_list = []        flux_ticks = 0        for bit in bits:            flux_ticks += next(bit_ticks_i)            if bit:                flux_list.append(flux_ticks)                flux_ticks = 0        if flux_ticks and for_writeout:            flux_list.append(flux_ticks)        # Package up the flux for return.        flux = WriteoutFlux(ticks_to_index, flux_list,                            ticks_to_index / self.time_per_rev,                            index_cued = cue_at_index,                            terminate_at_index = splice_at_index)        return flux# Track data generated from flux.class RawTrack:    def __init__(self, clock, data):        self.clock = clock        self.clock_max_adj = 0.10        self.pll_period_adj = 0.05        self.pll_phase_adj = 0.60        self.bitarray = bitarray(endian='big')        self.timearray = []        self.revolutions = []        self.import_flux_data(data)    def __str__(self):        s = "\nRaw Track: %d revolutions\n" % len(self.revolutions)        for rev in range(len(self.revolutions)):            b, _ = self.get_revolution(rev)            s += "Revolution %u (%u bits): " % (rev, len(b))            s += str(binascii.hexlify(b.tobytes())) + "\n"        b = self.bitarray[sum(self.revolutions):]        s += "Tail (%u bits): " % (len(b))        s += str(binascii.hexlify(b.tobytes())) + "\n"        return s[:-1]    def get_revolution(self, nr):        start = sum(self.revolutions[:nr])        end = start + self.revolutions[nr]        return self.bitarray[start:end], self.timearray[start:end]    def get_all_data(self):        return self.bitarray, self.timearray    def import_flux_data(self, data):        flux = data.flux()        freq = flux.sample_freq        clock = self.clock        clock_min = self.clock * (1 - self.clock_max_adj)        clock_max = self.clock * (1 + self.clock_max_adj)        index_iter = it.chain(iter(map(lambda x: x/freq, flux.index_list)),                              [float('inf')])        # Make sure there's enough time in the flux list to cover all        # revolutions by appending a "large enough" final flux value.        tail = max(0, sum(flux.index_list) - sum(flux.list) + clock*freq*2)        flux_iter = it.chain(flux.list, [tail])        try:            optimised.flux_to_bitcells(                self.bitarray, self.timearray, self.revolutions,                index_iter, flux_iter,                freq, clock, clock_min, clock_max,                self.pll_period_adj, self.pll_phase_adj)        except AttributeError:            flux_to_bitcells(                self.bitarray, self.timearray, self.revolutions,                index_iter, flux_iter,                freq, clock, clock_min, clock_max,                self.pll_period_adj, self.pll_phase_adj)            def flux_to_bitcells(bit_array, time_array, revolutions,                     index_iter, flux_iter,                     freq, clock_centre, clock_min, clock_max,                     pll_period_adj, pll_phase_adj):    nbits = 0    ticks = 0.0    clock = clock_centre    to_index = next(index_iter)    for x in flux_iter:        # Gather enough ticks to generate at least one bitcell.        ticks += x / freq        if ticks < clock/2:            continue        # Clock out zero or more 0s, followed by a 1.        zeros = 0        while True:            # Check if we cross the index mark.            to_index -= clock            if to_index < 0:                revolutions.append(nbits)                nbits = 0                to_index += next(index_iter)            nbits += 1            ticks -= clock            time_array.append(clock)            if ticks >= clock/2:                zeros += 1                bit_array.append(False)            else:                bit_array.append(True)                break        # PLL: Adjust clock frequency according to phase mismatch.        if zeros <= 3:            # In sync: adjust clock by a fraction of the phase mismatch.            clock += ticks * pll_period_adj        else:            # Out of sync: adjust clock towards centre.            clock += (clock_centre - clock) * pll_period_adj        # Clamp the clock's adjustment range.        clock = min(max(clock, clock_min), clock_max)        # PLL: Adjust clock phase according to mismatch.        new_ticks = ticks * (1 - pll_phase_adj)        time_array[-1] += ticks - new_ticks        ticks = new_ticks# Local variables:# python-indent: 4# End:
 |