hfe.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. # greaseweazle/image/hfe.py
  2. #
  3. # Written & released by Keir Fraser <keir.xen@gmail.com>
  4. #
  5. # This is free and unencumbered software released into the public domain.
  6. # See the file COPYING for more details, or visit <http://unlicense.org>.
  7. import struct
  8. from greaseweazle.flux import Flux
  9. from greaseweazle.bitcell import Bitcell
  10. from bitarray import bitarray
  11. class HFE:
  12. def __init__(self, start_cyl, nr_sides):
  13. self.start_cyl = start_cyl
  14. self.nr_sides = nr_sides
  15. self.bitrate = 250 # XXX real bitrate?
  16. # Each track is (bitlen, rawbytes).
  17. # rawbytes is a bytes() object in little-endian bit order.
  18. self.track_list = []
  19. @classmethod
  20. def from_file(cls, dat):
  21. (sig, f_rev, nr_cyls, nr_sides, t_enc, bitrate,
  22. _, _, _, tlut_base) = struct.unpack("<8s4B2H2BH", dat[:20])
  23. assert sig != b"HXCHFEV3", "HFEv3 is not supported"
  24. assert sig == b"HXCPICFE" and f_rev <= 1, "Not a valid HFE file"
  25. assert 0 < nr_cyls
  26. assert 0 < nr_sides < 3
  27. assert bitrate != 0
  28. hfe = cls(0, nr_sides)
  29. hfe.bitrate = bitrate
  30. tlut = dat[tlut_base*512:tlut_base*512+nr_cyls*4]
  31. for cyl in range(nr_cyls):
  32. for side in range(nr_sides):
  33. offset, length = struct.unpack("<2H", tlut[cyl*4:(cyl+1)*4])
  34. todo = length // 2
  35. tdat = bytes()
  36. while todo:
  37. d_off = offset*512 + side*256
  38. d_nr = 256 if todo > 256 else todo
  39. tdat += dat[d_off:d_off+d_nr]
  40. todo -= d_nr
  41. offset += 1
  42. hfe.track_list.append((len(tdat)*8, tdat))
  43. return hfe
  44. def get_track(self, cyl, side, writeout=False):
  45. if side >= self.nr_sides or cyl < self.start_cyl:
  46. return None
  47. off = cyl * self.nr_sides + side
  48. if off >= len(self.track_list):
  49. return None
  50. bitlen, rawbytes = self.track_list[off]
  51. tdat = bitarray(endian='little')
  52. tdat.frombytes(rawbytes)
  53. tdat = tdat[:bitlen]
  54. return Flux.from_bitarray(tdat, self.bitrate * 2000)
  55. def append_track(self, flux):
  56. bc = Bitcell()
  57. bc.clock = 0.0005 / self.bitrate
  58. bc.from_flux(flux)
  59. bits = bc.revolution_list[0][0]
  60. bits.bytereverse()
  61. self.track_list.append((len(bits), bits.tobytes()))
  62. def get_image(self):
  63. # Construct the image header.
  64. n_cyl = self.start_cyl + len(self.track_list) // self.nr_sides
  65. header = struct.pack("<8s4B2H2BH",
  66. b"HXCPICFE",
  67. 0,
  68. n_cyl,
  69. self.nr_sides,
  70. 0xff, # unknown encoding
  71. self.bitrate,
  72. 0, # rpm (unused)
  73. 0xff, # unknown interface
  74. 1, # rsvd
  75. 1) # track list offset
  76. # We dynamically build the Track-LUT and -Data arrays.
  77. tlut = bytearray()
  78. tdat = bytearray()
  79. # Dummy data for unused initial cylinders. Assumes 300RPM.
  80. for i in range(self.start_cyl):
  81. nr_bytes = 100 * self.bitrate
  82. tlut += struct.pack("<2H", len(tdat)//512 + 2, nr_bytes)
  83. tdat += bytes([0x88] * (nr_bytes+0x1ff & ~0x1ff))
  84. # Stuff real data into the image.
  85. for i in range(0, len(self.track_list), self.nr_sides):
  86. bc = [self.track_list[i],
  87. self.track_list[i+1] if self.nr_sides > 1 else (0,bytes())]
  88. nr_bytes = max(len(t[1]) for t in bc)
  89. nr_blocks = (nr_bytes + 0xff) // 0x100
  90. tlut += struct.pack("<2H", len(tdat)//512 + 2, 2 * nr_bytes)
  91. for b in range(nr_blocks):
  92. for t in bc:
  93. slice = t[1][b*256:(b+1)*256]
  94. tdat += slice + bytes([0x88] * (256 - len(slice)))
  95. # Pad the header and TLUT to 512-byte blocks.
  96. header += bytes([0xff] * (0x200 - len(header)))
  97. tlut += bytes([0xff] * (0x200 - len(tlut)))
  98. return header + tlut + tdat
  99. # Local variables:
  100. # python-indent: 4
  101. # End: