123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- /*
- * adc_global.c
- *
- * Created on: Jan 12, 2021
- * Author: David Original work by Jose (PTDreamer), 2017
- */
- #include "adc_global.h"
- #include "buzzer.h"
- #include "iron.h"
- #include "tempsensors.h"
- #include "voltagesensors.h"
- #include "board.h"
- volatile adc_measures_t ADC_measures[ADC_BFSIZ];
- volatile ADC_Status_t ADC_Status;
- volatile ADCDataTypeDef_t TIP = {
- adc_buffer: &ADC_measures[0].TIP
- };
- #ifdef USE_VIN
- volatile ADCDataTypeDef_t VIN = {
- adc_buffer: &ADC_measures[0].VIN
- };
- #endif
- #ifdef USE_NTC
- volatile ADCDataTypeDef_t NTC = {
- adc_buffer: &ADC_measures[0].NTC
- };
- #endif
- #ifdef USE_VREF
- volatile ADCDataTypeDef_t VREF = {
- adc_buffer: &ADC_measures[0].VREF
- };
- #endif
- static ADC_HandleTypeDef *adc_device;
- uint8_t ADC_Cal(void){
- return HAL_ADCEx_Calibration_Start(adc_device);
- }
- void ADC_Init(ADC_HandleTypeDef *adc){
- adc_device=adc;
- ADC_ChannelConfTypeDef sConfig = {0};
- #ifdef STM32F072xB
- adc_device->Instance->CHSELR &= ~(0x7FFFF); // Disable all regular channels
- sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
- #endif
- #if defined STM32F101xB || defined STM32F102xB || defined STM32F103xB
- adc_device->Init.NbrOfConversion = ADC_Num;
- #endif
- adc_device->Init.ExternalTrigConv = ADC_SOFTWARE_START; // Set software trigger
- if (HAL_ADC_Init(adc_device) != HAL_OK) { Error_Handler(); }
- sConfig.SamplingTime = ADC_SAMPLETIME_13CYCLES_5; // More sampling time to compensate high input impedances
- #ifdef ADC_CH_1ST
- #if defined STM32F101xB || defined STM32F102xB || defined STM32F103xB
- sConfig.Rank = ADC_REGULAR_RANK_1;
- #endif
- sConfig.Channel = ADC_CH_1ST;
- if (HAL_ADC_ConfigChannel(adc_device, &sConfig) != HAL_OK){Error_Handler();}
- #endif
- #ifdef ADC_CH_2ND
- #if defined STM32F101xB || defined STM32F102xB || defined STM32F103xB
- sConfig.Rank = ADC_REGULAR_RANK_2;
- #endif
- sConfig.Channel = ADC_CH_2ND;
- if (HAL_ADC_ConfigChannel(adc_device, &sConfig) != HAL_OK){Error_Handler();}
- #endif
- #ifdef ADC_CH_3RD
- #if defined STM32F101xB || defined STM32F102xB || defined STM32F103xB
- sConfig.Rank = ADC_REGULAR_RANK_3;
- #endif
- sConfig.Channel = ADC_CH_3RD;
- if (HAL_ADC_ConfigChannel(adc_device, &sConfig) != HAL_OK){Error_Handler();}
- #endif
- #ifdef ADC_CH_4TH
- #if defined STM32F101xB || defined STM32F102xB || defined STM32F103xB
- sConfig.Rank = ADC_REGULAR_RANK_4;
- #endif
- sConfig.Channel = ADC_CH_4TH;
- if (HAL_ADC_ConfigChannel(adc_device, &sConfig) != HAL_OK){Error_Handler();}
- #endif
- if(ADC_Cal() != HAL_OK ){
- Error_Handler();
- }
- ADC_Status = ADC_Idle;
- buzzer_short_beep();
- }
- void ADC_Start_DMA(){
- if(ADC_Status!=ADC_Waiting){
- Error_Handler();
- }
- if( PWM_GPIO_Port->IDR & PWM_Pin ){ // Check if PWM is active
- buzzer_long_beep(); // Generate warning with a beep
- }
- #ifdef DEBUG_PWM
- HAL_GPIO_WritePin(PWM_DBG_GPIO_Port, PWM_DBG_Pin,1); // Toggle TEST
- #endif
- ADC_Status=ADC_Sampling;
- if(HAL_ADC_Start_DMA(adc_device, (uint32_t*)ADC_measures, sizeof(ADC_measures)/ sizeof(uint16_t) )!=HAL_OK){ // Start ADC conversion now
- Error_Handler();
- }
- }
- void ADC_Stop_DMA(void){
- HAL_ADC_Stop_DMA(adc_device);
- }
- /*
- * Some credits: https://kiritchatterjee.wordpress.com/2014/11/10/a-simple-digital-low-pass-filter-in-c/
- */
- void DoAverage(volatile ADCDataTypeDef_t* InputData){
- volatile uint16_t *inputBuffer=InputData->adc_buffer;
- uint32_t adc_sum,avg_data;
- uint16_t max=0, min=0xffff;
- uint8_t shift;
- InputData->prev_avg=InputData->last_avg;
- InputData->prev_raw=InputData->last_raw;
- // Make the average of the ADC buffer
- adc_sum = 0;
- for(uint16_t x = 0; x < ADC_BFSIZ; x++) {
- adc_sum += *inputBuffer;
- if(*inputBuffer > max){
- max = *inputBuffer;
- }
- if(*inputBuffer < min){
- min = *inputBuffer;
- }
- inputBuffer += ADC_Num;
- }
- //Remove highest and lowest values
- adc_sum -= (min + max);
- // Calculate average
- avg_data = adc_sum / (ADC_BFSIZ -2) ;
- InputData->last_raw = avg_data;
- if(systemSettings.Profile.filterFactor > 0) { // Advanced filtering enabled?
- if(systemSettings.Profile.filterFactor>8){ // Limit coefficient, more than 8 will cause overflow
- systemSettings.Profile.filterFactor=8;
- }
- shift = systemSettings.Profile.filterFactor; // Set EMA factor setting from system settings
- // Fixed point shift
- uint32_t RawData = avg_data << 12;
- // Compute EMA of input
- #define LIMIT_FILTERING
- #ifdef LIMIT_FILTERING
- #define SMOOTH_START 50 // Start difference to apply partial filtering override
- #define SMOOTH_END 150 // Max difference to completely override filter
- #define SMOOTH_DIFF (SMOOTH_END-SMOOTH_START)
- #if defined DEBUG_PWM && SWO_PRINT
- extern bool dbg_newData;
- #endif
- int32_t diff = (int32_t)avg_data - (int32_t)(InputData->EMA_of_Input>>12); // Check difference between stored EMA and last average
- int32_t abs_diff=abs(diff);
- if(abs_diff>SMOOTH_END){ // If huge (Filtering will delay too much the response)
- InputData->EMA_of_Input = RawData; // Reset filter
- #if defined DEBUG_PWM && SWO_PRINT
- dbg_newData=1; // Enable flag to debug the data
- #endif
- }
- else if(abs_diff>SMOOTH_START){ // If medium, smoothen the difference
- InputData->EMA_of_Input += ((diff*(abs_diff-SMOOTH_START))/SMOOTH_DIFF)<<12;
- #if defined DEBUG_PWM && SWO_PRINT
- //dbg_newData=1; // Meh, just some noise, not important
- #endif
- }
- else{
- InputData->EMA_of_Input = ( ((InputData->EMA_of_Input << shift) - InputData->EMA_of_Input) + RawData +(1<<(shift-1)))>>shift;
- }
- #else
- InputData->EMA_of_Input = ( ((InputData->EMA_of_Input << shift) - InputData->EMA_of_Input) + RawData +(1<<(shift-1)))>>shift;
- #endif
- InputData->last_avg = InputData->EMA_of_Input>>12;
- }
- else {
- InputData->last_avg=avg_data;
- }
- }
- uint16_t ADC_to_mV (uint16_t adc){
- /*
- * Instead running ( ADC*(3300/4095) ),
- * We previously multiply (3300/4095)*2^20 = 845006
- * Then we can use the fast hardware multiplier and
- * divide just with bit rotation.
- *
- * So it becomes Vadc = (ADC * 845006) >>20
- * Max possible input = 20 bit number, more will cause overflow to the 32 bit variable
- * Calculated to use 12 bit max input from ADC (4095)
- * Much, much faster than floats!
- */
- return( ((uint32_t)845006*adc)>>20 );
- }
- // Don't call this function, only the ADC ISR should use it.
- void handle_ADC_Data(void){
- DoAverage(&TIP);
- #ifdef USE_VREF
- DoAverage(&VREF);
- #endif
- #ifdef USE_NTC
- DoAverage(&NTC);
- #endif
- #ifdef USE_VIN
- DoAverage(&VIN);
- #endif
- }
- void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* _hadc){
- #if defined DEBUG_PWM && SWO_PRINT
- extern bool dbg_newData;
- extern uint16_t dbg_prev_TIP_Raw, dbg_prev_TIP, dbg_prev_VIN, dbg_prev_PWR;
- extern int16_t dbg_prev_NTC;
- bool dbg_t=dbg_newData;
- #endif
- if(_hadc == adc_device){
- if(ADC_Status!=ADC_Sampling){
- Error_Handler();
- }
- ADC_Stop_DMA(); // Reset the ADC
- ADC_Status = ADC_Idle;
- HAL_IWDG_Refresh(&hiwdg); // This is the main reset of the watchdog
- // If anything critical stalls (PWM, ADC, hanlleIron) this won't be updated anymore
- // causing a system reset
- if( PWM_GPIO_Port->IDR & PWM_Pin ){ // If PWM is active
- buzzer_long_beep(); // Beep to warn the issue, skip adc
- TIP.last_avg = systemSettings.Profile.noIronValue - 1; // Set reading = max temperature to force PID to throttle down
- TIP.last_raw = systemSettings.Profile.noIronValue - 1; // But avoiding no iron error
- }
- else{
- handle_ADC_Data(); // Else, update data normally
- }
- #if defined DEBUG_PWM && defined SWO_PRINT
- if(dbg_t!=dbg_newData){ // Save values before handleIron() updates them
- dbg_prev_TIP_Raw=last_TIP_Raw; // If filter was resetted, print values
- dbg_prev_TIP=last_TIP;
- dbg_prev_VIN=last_VIN;
- dbg_prev_NTC=last_NTC;
- dbg_prev_PWR=Iron.CurrentIronPower;
- }
- #endif
- handleIron(); // Handle iron
- runAwayCheck(); // Check runaway condition
- #ifdef DEBUG_PWM
- HAL_GPIO_WritePin(PWM_DBG_GPIO_Port, PWM_DBG_Pin,0); // Toggle TEST
- #endif
- }
- }
|