/* * squelch.cpp * * Copyright (C) 2022-2023 charlie-foxtrot * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "squelch.h" #ifdef DEBUG_SQUELCH #include // errno #include // strerror() #endif /* DEBUG_SQUELCH _*/ #include // calloc() #include // min() #include // assert() #include // pow() #include "logging.h" // debug_print() using namespace std; Squelch::Squelch(void) { noise_floor_ = 5.0f; set_squelch_snr_threshold(9.54f); // depends on noise_floor_, sets using_manual_level_, normal_signal_ratio_, flappy_signal_ratio_, and moving_avg_cap_ manual_signal_level_ = -1.0; pre_filter_ = {0.001f, 0.001f}; post_filter_ = {0.001f, 0.001f}; squelch_level_ = 0.0f; using_post_filter_ = false; pre_vs_post_factor_ = 0.9f; open_delay_ = 197; close_delay_ = 197; low_signal_abort_ = 88; next_state_ = CLOSED; current_state_ = CLOSED; delay_ = 0; open_count_ = 0; sample_count_ = -1; flappy_count_ = 0; low_signal_count_ = 0; recent_sample_size_ = 1000; flap_opens_threshold_ = 3; recent_open_count_ = 0; closed_sample_count_ = 0; buffer_size_ = 102; // NOTE: this is specific to the 2nd order lowpass Bessel filter buffer_head_ = 0; buffer_tail_ = 1; buffer_ = (float*)calloc(buffer_size_, sizeof(float)); #ifdef DEBUG_SQUELCH debug_file_ = NULL; raw_input_ = 0.0; filtered_input_ = 0.0; #endif /* DEBUG_SQUELCH */ assert(open_delay_ > buffer_size_); debug_print("Created Squelch, open_delay_: %d, close_delay_: %d, low_signal_abort: %d, using_manual_level_: %s\n", open_delay_, close_delay_, low_signal_abort_, using_manual_level_ ? "true" : "false"); } void Squelch::set_squelch_level_threshold(const float& level) { if (level > 0) { using_manual_level_ = true; manual_signal_level_ = level; } else { using_manual_level_ = false; } // Need to update moving_avg_cap_ - depends on using_manual_level_ and manual_signal_level_ calculate_moving_avg_cap(); debug_print("Set level threshold, using_manual_level_: %s, manual_signal_level_: %f, moving_avg_cap_: %f\n", using_manual_level_ ? "true" : "false", manual_signal_level_, moving_avg_cap_); } void Squelch::set_squelch_snr_threshold(const float& db) { using_manual_level_ = false; normal_signal_ratio_ = pow(10.0, db / 20.0); flappy_signal_ratio_ = normal_signal_ratio_ * 0.9f; // Need to update moving_avg_cap_ - depends on using_manual_level_ and normal_signal_ratio_ calculate_moving_avg_cap(); debug_print("SNR threshold updated, using_manual_level_: %s, normal_signal_ratio_: %f, flappy_signal_ratio_: %f, moving_avg_cap_: %f\n", using_manual_level_ ? "true" : "false", normal_signal_ratio_, flappy_signal_ratio_, moving_avg_cap_); } void Squelch::set_ctcss_freq(const float& ctcss_freq, const float& sample_rate) { // create two CTCSS detectors with different window sizes. 0.4 sec is required to tell between all the "standard" // tones but 0.05 is enough to tell between tones ~20 Hz appart. Will use ctcss_fast_ until there are enough samples // for ctcss_slow_ ctcss_fast_ = CTCSS(ctcss_freq, sample_rate, sample_rate * 0.05); ctcss_slow_ = CTCSS(ctcss_freq, sample_rate, sample_rate * 0.4); } bool Squelch::is_open(void) const { // if current state is OPEN or CLOSING then decide based on CTCSS (if enabled) if (current_state_ == OPEN || current_state_ == CLOSING) { // if CTCSS is enabled then use slow (more accurate) if it has enough samples, otherwise // use fast (will return false if also not enough samples) if (ctcss_slow_.is_enabled()) { if (ctcss_slow_.enough_samples()) { return ctcss_slow_.has_tone(); } return ctcss_fast_.has_tone(); } return true; } return false; } bool Squelch::should_filter_sample(void) { return ((has_pre_filter_signal() || current_state_ != CLOSED) && current_state_ != LOW_SIGNAL_ABORT); } bool Squelch::should_process_audio(void) { return (current_state_ == OPEN || current_state_ == CLOSING); } bool Squelch::first_open_sample(void) const { return (current_state_ != OPEN && next_state_ == OPEN); } bool Squelch::last_open_sample(void) const { return (current_state_ == CLOSING && next_state_ == CLOSED) || (current_state_ != LOW_SIGNAL_ABORT && next_state_ == LOW_SIGNAL_ABORT); } bool Squelch::signal_outside_filter(void) { return (using_post_filter_ && has_pre_filter_signal() && !has_post_filter_signal()); } const float& Squelch::noise_level(void) const { return noise_floor_; } const float& Squelch::signal_level(void) const { return pre_filter_.full_; } const float& Squelch::squelch_level(void) { if (using_manual_level_) { return manual_signal_level_; } if (squelch_level_ == 0.0f) { if (currently_flapping() && flappy_signal_ratio_ < normal_signal_ratio_) { squelch_level_ = flappy_signal_ratio_ * noise_floor_; } else { squelch_level_ = normal_signal_ratio_ * noise_floor_; } } return squelch_level_; } const size_t& Squelch::open_count(void) const { return open_count_; } const size_t& Squelch::flappy_count(void) const { return flappy_count_; } const size_t& Squelch::ctcss_count(void) const { return ctcss_slow_.found_count(); } const size_t& Squelch::no_ctcss_count(void) const { return ctcss_slow_.not_found_count(); } void Squelch::process_raw_sample(const float& sample) { // Update current state based on previous state from last iteration update_current_state(); #ifdef DEBUG_SQUELCH raw_input_ = sample; #endif /* DEBUG_SQUELCH */ sample_count_++; // Auto noise floor // - Doing this every 16 samples instead of every sample allows a gradual signal increase // to cross the squelch threshold (that is a function of the noise floor) sooner. // - Updating even when squelch is open and / or signal is outside filter means the noise // floor (and squelch threshold) will slowly increasing during a long signal. This can lead // to flapping, but this keeps a sudden and sustained increase of noise from locking squelch // OPEN. if (sample_count_ % 16 == 0) { calculate_noise_floor(); } update_moving_avg(pre_filter_, sample); // Apply the comparison factor before adding to the buffer, will later be used as the threshold // for the post_filter_ buffer_[buffer_head_] = pre_filter_.capped_ * pre_vs_post_factor_; // Check signal against thresholds if (current_state_ == OPEN && !has_signal()) { debug_print("Closing at %zu: no signal after timeout (%f, %f, %f)\n", sample_count_, pre_filter_.capped_, post_filter_.capped_, squelch_level()); set_state(CLOSING); } if (current_state_ == CLOSED && has_signal()) { debug_print("Opening at %zu: signal (%f, %f, %f)\n", sample_count_, pre_filter_.capped_, post_filter_.capped_, squelch_level()); set_state(OPENING); } // Override squelch and close if there are repeated samples under the squelch level // NOTE: this can cause squelch to close, but it may immediately be re-opened if the signal level still hasn't fallen after the delays if (current_state_ != CLOSED && current_state_ != LOW_SIGNAL_ABORT) { if (sample >= squelch_level()) { low_signal_count_ = 0; } else { low_signal_count_++; if (low_signal_count_ >= low_signal_abort_) { debug_print("Low signal abort at %zu: low signal count %d\n", sample_count_, low_signal_count_); set_state(LOW_SIGNAL_ABORT); } } } } void Squelch::process_filtered_sample(const float& sample) { #ifdef DEBUG_SQUELCH filtered_input_ = sample; #endif /* DEBUG_SQUELCH */ if (!should_filter_sample()) { return; } if (current_state_ == OPENING) { // While OPENING, need to wait until the pre-filter value gets through the buffer if (delay_ < buffer_size_) { return; } // Buffer has been filled, initialize post-filter with the pre-filter value if (delay_ == buffer_size_) { post_filter_ = {buffer_[buffer_tail_], buffer_[buffer_tail_]}; } } using_post_filter_ = true; update_moving_avg(post_filter_, sample); // Always comparing the post-filter average to the buffered pre-filtered value if (post_filter_.capped_ < buffer_[buffer_tail_]) { debug_print("Closing at %zu: signal level post filter (%f < %f)\n", sample_count_, post_filter_.capped_, squelch_level()); set_state(CLOSED); } } void Squelch::process_audio_sample(const float& sample) { #ifdef DEBUG_SQUELCH audio_input_ = sample; #endif /* DEBUG_SQUELCH */ if (!ctcss_slow_.is_enabled()) { return; } // ctcss_ is reset on transition to CLOSED and stays "unused" while CLOSED if (current_state_ != CLOSED) { // always send the sample to the slow (more accurate) detector, also send to the fast if there havent been enough yet ctcss_slow_.process_audio_sample(sample); if (!ctcss_slow_.enough_samples()) { ctcss_fast_.process_audio_sample(sample); } } } void Squelch::set_state(State update) { // Valid transitions (current_state_ -> next_state_) are: // - CLOSED -> CLOSED // - CLOSED -> OPENING // --------------------------- // - OPENING -> CLOSED // - OPENING -> OPENING // - OPENING -> CLOSING // - OPENING -> OPEN // --------------------------- // - CLOSING -> CLOSED // - CLOSING -> OPENING // - CLOSING -> CLOSING // - CLOSING -> LOW_SIGNAL_ABORT // - CLOSING -> OPEN // --------------------------- // - LOW_SIGNAL_ABORT -> CLOSED // - LOW_SIGNAL_ABORT -> LOW_SIGNAL_ABORT // --------------------------- // - OPEN -> CLOSING // - OPEN -> LOW_SIGNAL_ABORT // - OPEN -> OPEN // Invalid transistions (current_state_ -> next_state_) are: // CLOSED -> CLOSING (if already CLOSED cant go backwards) if (current_state_ == CLOSED && update == CLOSING) { update = CLOSED; } // CLOSED -> LOW_SIGNAL_ABORT (if already CLOSED cant go backwards) else if (current_state_ == CLOSED && update == LOW_SIGNAL_ABORT) { update = CLOSED; } // CLOSED -> OPEN (must go through OPENING to get to OPEN) else if (current_state_ == CLOSED && update == OPEN) { update = OPENING; } // OPENING -> LOW_SIGNAL_ABORT (just go to CLOSED instead) else if (current_state_ == OPENING && update == LOW_SIGNAL_ABORT) { update = CLOSED; } // LOW_SIGNAL_ABORT -> OPENING (LOW_SIGNAL_ABORT can only go to CLOSED) // LOW_SIGNAL_ABORT -> OPEN (LOW_SIGNAL_ABORT can only go to CLOSED) // LOW_SIGNAL_ABORT -> CLOSING (LOW_SIGNAL_ABORT can only go to CLOSED) else if (current_state_ == LOW_SIGNAL_ABORT && update != LOW_SIGNAL_ABORT && update != CLOSED) { update = CLOSED; } // OPEN -> CLOSED (must go through CLOSING to get to CLOSED) else if (current_state_ == OPEN && update == CLOSED) { update = CLOSING; } // OPEN -> OPENING (if already OPEN cant go backwards) else if (current_state_ == OPEN && update == OPENING) { update = OPEN; } next_state_ = update; } void Squelch::update_current_state(void) { if (next_state_ == OPENING) { if (current_state_ != OPENING) { debug_print("%zu: transitioning to OPENING\n", sample_count_); delay_ = 0; low_signal_count_ = 0; using_post_filter_ = false; current_state_ = next_state_; } else { // in OPENING delay delay_++; if (delay_ >= open_delay_) { // After getting through OPENING delay, count this as an "open" for flap // detection even if signal has gone. NOTE - if process_filtered_sample() would // have already sent state to CLOSED before the delay if post_filter_.capped_ was // too low, so that wont count towards flapping if (closed_sample_count_ < recent_sample_size_) { recent_open_count_++; if (currently_flapping()) { flappy_count_++; } // Force squelch_level_ recalculation at next call to squelch_level() squelch_level_ = 0.0f; } // Check signal level after delay to either go to OPEN or CLOSED if (has_signal()) { next_state_ = OPEN; } else { debug_print("%zu: no signal after OPENING delay, going to CLOSED\n", sample_count_); next_state_ = CLOSED; } } } } else if (next_state_ == CLOSING) { if (current_state_ != CLOSING) { debug_print("%zu: transitioning to CLOSING\n", sample_count_); delay_ = 0; current_state_ = next_state_; } else { // in CLOSING delay delay_++; if (delay_ >= close_delay_) { if (!has_signal()) { next_state_ = CLOSED; } else { debug_print("%zu: signal after CLOSING delay, reverting to OPEN\n", sample_count_); current_state_ = OPEN; // set current_state_ to avoid incrementing open_count_ next_state_ = OPEN; } } } } else if (next_state_ == LOW_SIGNAL_ABORT) { if (current_state_ != LOW_SIGNAL_ABORT) { debug_print("%zu: transitioning to LOW_SIGNAL_ABORT\n", sample_count_); // If coming from CLOSING then keep the delay counter that has already started if (current_state_ != CLOSING) { delay_ = 0; } current_state_ = next_state_; } else { // in LOW_SIGNAL_ABORT delay delay_++; if (delay_ >= close_delay_) { next_state_ = CLOSED; } } } else if (next_state_ == OPEN && current_state_ != OPEN) { debug_print("%zu: transitioning to OPEN\n", sample_count_); open_count_++; current_state_ = next_state_; } else if (next_state_ == CLOSED && current_state_ != CLOSED) { debug_print("%zu: transitioning to CLOSED\n", sample_count_); using_post_filter_ = false; closed_sample_count_ = 0; current_state_ = next_state_; ctcss_fast_.reset(); ctcss_slow_.reset(); } else if (next_state_ == CLOSED && current_state_ == CLOSED) { // Count this as a closed sample towards flap detection (can stop counting at recent_sample_size_) if (closed_sample_count_ < recent_sample_size_) { closed_sample_count_++; } else if (closed_sample_count_ == recent_sample_size_) { recent_open_count_ = 0; squelch_level_ = 0.0f; // Force squelch_level_ recalculation } } else { current_state_ = next_state_; } buffer_tail_ = (buffer_tail_ + 1) % buffer_size_; buffer_head_ = (buffer_head_ + 1) % buffer_size_; #ifdef DEBUG_SQUELCH debug_state(); #endif /* DEBUG_SQUELCH */ } bool Squelch::has_pre_filter_signal(void) { return pre_filter_.capped_ >= squelch_level(); } bool Squelch::has_post_filter_signal(void) { return using_post_filter_ && post_filter_.capped_ >= buffer_[buffer_tail_]; } bool Squelch::has_signal(void) { if (using_post_filter_) { return has_pre_filter_signal() && has_post_filter_signal(); } return has_pre_filter_signal(); } void Squelch::calculate_noise_floor(void) { static const float decay_factor = 0.97f; static const float new_factor = 1.0 - decay_factor; noise_floor_ = noise_floor_ * decay_factor + std::min(pre_filter_.capped_, noise_floor_) * new_factor + 1e-6f; debug_print("%zu: noise floor is now %f\n", sample_count_, noise_floor_); // Need to update moving_avg_cap_ - depends on noise_floor_ calculate_moving_avg_cap(); // Force squelch_level_ recalculation at next call to squelch_level() - depends on noise_floor_ squelch_level_ = 0.0f; } void Squelch::calculate_moving_avg_cap(void) { // set max value for MovingAverage's capped_ to 1.5 x the normal / manual squelch level. if (using_manual_level_) { moving_avg_cap_ = 1.5f * manual_signal_level_; } else { moving_avg_cap_ = 1.5f * normal_signal_ratio_ * noise_floor_; } } void Squelch::update_moving_avg(MovingAverage& avg, const float& sample) { static const float decay_factor = 0.99f; static const float new_factor = 1.0 - decay_factor; avg.full_ = avg.full_ * decay_factor + sample * new_factor; // Cap average level, this lets the average drop after the signal goes away more quickly // (if current value and update are both at/above the max then can avoid the float multiplications) if (avg.capped_ >= moving_avg_cap_ && sample >= moving_avg_cap_) { avg.capped_ = moving_avg_cap_; } else { avg.capped_ = min(moving_avg_cap_, avg.capped_ * decay_factor + sample * new_factor); } } bool Squelch::currently_flapping(void) const { return recent_open_count_ >= flap_opens_threshold_; } #ifdef DEBUG_SQUELCH /* Debug file methods ================== Values written to file are: - (int16_t) process_raw_sample input - (int16_t) process_filtered_sample input - (int16_t) process_audio_sample input - (int16_t) noise_floor_ - (int16_t) pre_filter_.capped_ - (int16_t) post_filter_.capped_ - (int) current_state_ - (int) delay_ - (int) low_signalcount_ - (int) ctcss_fast_.has_tone() - (int) ctcss_slow_.has_tone() The output file can be read / plotted in python as follows: import matplotlib.pyplot as plt import numpy as np def plot_squelch_debug(filepath): dt = np.dtype([('raw_input', np.single), ('filtered_input', np.single), ('audio_input', np.single), ('noise_floor', np.single), ('pre_filter_capped', np.single), ('post_filter_capped', np.single), ('current_state', np.intc), ('delay', np.intc), ('low_signalcount', np.intc), ('ctcss_fast_has_tone', np.intc), ('ctcss_slow_has_tone', np.intc) ]) dat = np.fromfile(filepath, dtype=dt) plt.figure() plt.plot(dat['raw_input'], 'b') plt.plot(dat['pre_filter_capped'], 'g') plt.plot(dat['noise_floor'], 'r') plt.show(block=False) plt.figure() plt.plot(dat['post_filter_capped'], 'k') plt.show(block=False) plt.figure() axis = plt.subplot2grid((3, 1), (0, 0)) axis.plot(dat['current_state'], 'c') axis = plt.subplot2grid((3, 1), (1, 0)) axis.plot(dat['delay'], 'm') axis = plt.subplot2grid((3, 1), (2, 0)) axis.plot(dat['low_signalcount'], 'y') plt.show(block=False) return */ Squelch::~Squelch(void) { if (debug_file_) { fclose(debug_file_); } } void Squelch::set_debug_file(const char* filepath) { debug_file_ = fopen(filepath, "wb"); } void Squelch::debug_value(const float& value) { if (!debug_file_) { return; } if (fwrite(&value, sizeof(value), 1, debug_file_) != 1) { debug_print("Error writing to squelch debug file: %s\n", strerror(errno)); } } void Squelch::debug_value(const int& value) { if (!debug_file_) { return; } if (fwrite(&value, sizeof(value), 1, debug_file_) != 1) { debug_print("Error writing to squelch debug file: %s\n", strerror(errno)); } } void Squelch::debug_state(void) { if (!debug_file_) { return; } debug_value(raw_input_); debug_value(filtered_input_); debug_value(audio_input_); raw_input_ = 0.0; filtered_input_ = 0.0; audio_input_ = 0.0; debug_value(noise_floor_); debug_value(pre_filter_.capped_); debug_value(post_filter_.capped_); debug_value((int)current_state_); debug_value(delay_); debug_value(low_signal_count_); debug_value((int)ctcss_fast_.has_tone()); debug_value((int)ctcss_slow_.has_tone()); } #endif /* DEBUG_SQUELCH */