| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887 | /** * This program logs data from the Arduino ADC to a binary file. * * Samples are logged at regular intervals. Each Sample consists of the ADC * values for the analog pins defined in the PIN_LIST array.  The pins numbers * may be in any order. * * Edit the configuration constants below to set the sample pins, sample rate, * and other configuration values. * * If your SD card has a long write latency, it may be necessary to use * slower sample rates.  Using a Mega Arduino helps overcome latency * problems since more 64 byte buffer blocks will be used. * * Each 64 byte data block in the file has a four byte header followed by up * to 60 bytes of data. (60 values in 8-bit mode or 30 values in 10-bit mode) * Each block contains an integral number of samples with unused space at the * end of the block. * */#ifdef __AVR__#include <SPI.h>#include "SdFat.h"#include "BufferedPrint.h"#include "FreeStack.h"#include "AvrAdcLogger.h"// Save SRAM if 328.#ifdef __AVR_ATmega328P__#include "MinimumSerial.h"MinimumSerial MinSerial;#define Serial MinSerial#endif  // __AVR_ATmega328P__//------------------------------------------------------------------------------// This example was designed for exFAT but will support FAT16/FAT32.//// If an exFAT SD is required, the ExFatFormatter example will format// smaller cards with an exFAT file system.//// Note: Uno will not support SD_FAT_TYPE = 3.// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h,// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT.#define SD_FAT_TYPE 2//------------------------------------------------------------------------------// Set USE_RTC nonzero for file timestamps.// RAM use will be marginal on Uno with RTClib.#define USE_RTC 0#if USE_RTC#include "RTClib.h"#endif//------------------------------------------------------------------------------// Pin definitions.//// Digital pin to indicate an error, set to -1 if not used.// The led blinks for fatal errors. The led goes on solid for SD write// overrun errors and logging continues.const int8_t ERROR_LED_PIN = -1;// SD chip select pin.const uint8_t SD_CS_PIN = SS;//------------------------------------------------------------------------------// Analog pin number list for a sample.  Pins may be in any order and pin// numbers may be repeated.const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4};//------------------------------------------------------------------------------// Sample rate in samples per second.const float SAMPLE_RATE = 5000;  // Must be 0.25 or greater.// The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a// constant instead of being calculated from SAMPLE_RATE.  SAMPLE_RATE is not// used in the code below.  For example, setting SAMPLE_INTERVAL = 2.0e-4// will result in a 200 microsecond sample interval.const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE;// Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to// be rounded to a a multiple of the ADC clock period and will reduce sample// time jitter.#define ROUND_SAMPLE_INTERVAL 1//------------------------------------------------------------------------------// Reference voltage.  See the processor data-sheet for reference details.// uint8_t const ADC_REF = 0; // External Reference AREF pin.uint8_t const ADC_REF = (1 << REFS0);  // Vcc Reference.// uint8_t const ADC_REF = (1 << REFS1);  // Internal 1.1 (only 644 1284P Mega)// uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0);  // Internal 1.1 or 2.56//------------------------------------------------------------------------------// File definitions.//// Maximum file size in bytes.// The program creates a contiguous file with MAX_FILE_SIZE_MiB bytes.// The file will be truncated if logging is stopped early.const uint32_t MAX_FILE_SIZE_MiB = 100;  // 100 MiB file.// log file name.  Integer field before dot will be incremented.#define LOG_FILE_NAME "AvrAdc00.bin"// Maximum length name including zero byte.const size_t NAME_DIM = 40;// Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC.#define RECORD_EIGHT_BITS 0//------------------------------------------------------------------------------// FIFO size definition. Use a multiple of 512 bytes for best performance.//#if RAMEND < 0X8FF#error SRAM too small#elif RAMEND < 0X10FFconst size_t FIFO_SIZE_BYTES = 512;#elif RAMEND < 0X20FFconst size_t FIFO_SIZE_BYTES = 4*512;#elif RAMEND < 0X40FFconst size_t FIFO_SIZE_BYTES = 12*512;#else  // RAMENDconst size_t FIFO_SIZE_BYTES = 16*512;#endif  // RAMEND//------------------------------------------------------------------------------// ADC clock rate.// The ADC clock rate is normally calculated from the pin count and sample// interval.  The calculation attempts to use the lowest possible ADC clock// rate.//// You can select an ADC clock rate by defining the symbol ADC_PRESCALER to// one of these values.  You must choose an appropriate ADC clock rate for// your sample interval.// #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno// #define ADC_PRESCALER 6 // F_CPU/64  250 kHz on an Uno// #define ADC_PRESCALER 5 // F_CPU/32  500 kHz on an Uno// #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno// #define ADC_PRESCALER 3 // F_CPU/8  2000 kHz on an Uno (8-bit mode only)//==============================================================================// End of configuration constants.//==============================================================================// Temporary log file.  Will be deleted if a reset or power failure occurs.#define TMP_FILE_NAME "tmp_adc.bin"// Number of analog pins to log.const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]);// Minimum ADC clock cycles per sample intervalconst uint16_t MIN_ADC_CYCLES = 15;// Extra cpu cycles to setup ADC with more than one pin per sample.const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0;// Maximum cycles for timer0 system interrupt, millis, micros.const uint16_t ISR_TIMER0 = 160;//==============================================================================const uint32_t MAX_FILE_SIZE = MAX_FILE_SIZE_MiB << 20;// Select fastest interface.#if ENABLE_DEDICATED_SPI#define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI)#else  // ENABLE_DEDICATED_SPI#define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI)#endif  // ENABLE_DEDICATED_SPI#if SD_FAT_TYPE == 0SdFat sd;typedef File file_t;#elif SD_FAT_TYPE == 1SdFat32 sd;typedef File32 file_t;#elif SD_FAT_TYPE == 2SdExFat sd;typedef ExFile file_t;#elif SD_FAT_TYPE == 3SdFs sd;typedef FsFile file_t;#else  // SD_FAT_TYPE#error Invalid SD_FAT_TYPE#endif  // SD_FAT_TYPEfile_t binFile;file_t csvFile;char binName[] = LOG_FILE_NAME;#if RECORD_EIGHT_BITSconst size_t BLOCK_MAX_COUNT = PIN_COUNT*(DATA_DIM8/PIN_COUNT);typedef block8_t block_t;#else  // RECORD_EIGHT_BITSconst size_t BLOCK_MAX_COUNT = PIN_COUNT*(DATA_DIM16/PIN_COUNT);typedef block16_t block_t;#endif // RECORD_EIGHT_BITS// Size of FIFO in blocks.size_t const FIFO_DIM = FIFO_SIZE_BYTES/sizeof(block_t);block_t* fifoData;volatile size_t fifoCount = 0; // volatile - shared, ISR and background.size_t fifoHead = 0;  // Only accessed by ISR during logging.size_t fifoTail = 0;  // Only accessed by writer during logging.//==============================================================================// Interrupt Service Routines// Disable ADC interrupt if true.volatile bool isrStop = false;// Pointer to current buffer.block_t* isrBuf = nullptr;// overrun countuint16_t isrOver = 0;// ADC configuration for each pin.uint8_t adcmux[PIN_COUNT];uint8_t adcsra[PIN_COUNT];uint8_t adcsrb[PIN_COUNT];uint8_t adcindex = 1;// Insure no timer events are missed.volatile bool timerError = false;volatile bool timerFlag = false;//------------------------------------------------------------------------------// ADC done interrupt.ISR(ADC_vect) {  // Read ADC data.#if RECORD_EIGHT_BITS  uint8_t d = ADCH;#else  // RECORD_EIGHT_BITS  // This will access ADCL first.  uint16_t d = ADC;#endif  // RECORD_EIGHT_BITS  if (!isrBuf) {    if (fifoCount < FIFO_DIM) {      isrBuf = fifoData + fifoHead;    } else {      // no buffers - count overrun      if (isrOver < 0XFFFF) {        isrOver++;      }      // Avoid missed timer error.      timerFlag = false;      return;    }  }  // Start ADC for next pin  if (PIN_COUNT > 1) {    ADMUX = adcmux[adcindex];    ADCSRB = adcsrb[adcindex];    ADCSRA = adcsra[adcindex];    if (adcindex == 0) {      timerFlag = false;    }    adcindex =  adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0;  } else {    timerFlag = false;  }  // Store ADC data.  isrBuf->data[isrBuf->count++] = d;  // Check for buffer full.  if (isrBuf->count >= BLOCK_MAX_COUNT) {    fifoHead = fifoHead < (FIFO_DIM - 1) ? fifoHead + 1 : 0;    fifoCount++;    // Check for end logging.    if (isrStop) {      adcStop();      return;    }    // Set buffer needed and clear overruns.    isrBuf = nullptr;    isrOver = 0;  }}//------------------------------------------------------------------------------// timer1 interrupt to clear OCF1BISR(TIMER1_COMPB_vect) {  // Make sure ADC ISR responded to timer event.  if (timerFlag) {    timerError = true;  }  timerFlag = true;}//==============================================================================// Error messages stored in flash.#define error(msg) (Serial.println(F(msg)),errorHalt())#define assert(e) ((e) ? (void)0 : error("assert: " #e))//------------------------------------------------------------------------------//void fatalBlink() {  while (true) {    if (ERROR_LED_PIN >= 0) {      digitalWrite(ERROR_LED_PIN, HIGH);      delay(200);      digitalWrite(ERROR_LED_PIN, LOW);      delay(200);    }  }}//------------------------------------------------------------------------------void errorHalt() {  // Print minimal error data.  // sd.errorPrint(&Serial);  // Print extended error info - uses extra bytes of flash.  sd.printSdError(&Serial);  // Try to save data.  binFile.close();  fatalBlink();}//------------------------------------------------------------------------------void printUnusedStack() {  Serial.print(F("\nUnused stack: "));  Serial.println(UnusedStack());}//------------------------------------------------------------------------------#if USE_RTCRTC_DS1307 rtc;// Call back for file timestamps.  Only called for file create and sync().void dateTime(uint16_t* date, uint16_t* time, uint8_t* ms10) {  DateTime now = rtc.now();  // Return date using FS_DATE macro to format fields.  *date = FS_DATE(now.year(), now.month(), now.day());  // Return time using FS_TIME macro to format fields.  *time = FS_TIME(now.hour(), now.minute(), now.second());  // Return low time bits in units of 10 ms.  *ms10 = now.second() & 1 ? 100 : 0;}#endif  // USE_RTC//==============================================================================#if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2#error unexpected ADC prescaler bits#endif//------------------------------------------------------------------------------inline bool adcActive() {return (1 << ADIE) & ADCSRA;}//------------------------------------------------------------------------------// initialize ADC and timer1void adcInit(metadata_t* meta) {  uint8_t adps;  // prescaler bits for ADCSRA  uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5;  // Sample interval cpu cycles.  if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) {    error("Invalid ADC reference");  }#ifdef ADC_PRESCALER  if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) {    error("Invalid ADC prescaler");  }  adps = ADC_PRESCALER;#else  // ADC_PRESCALER  // Allow extra cpu cycles to change ADC settings if more than one pin.  int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC;  for (adps = 7; adps > 0; adps--) {    if (adcCycles >= (MIN_ADC_CYCLES << adps)) {      break;    }  }#endif  // ADC_PRESCALER  meta->adcFrequency = F_CPU >> adps;  if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) {    error("Sample Rate Too High");  }#if ROUND_SAMPLE_INTERVAL  // Round so interval is multiple of ADC clock.  ticks += 1 << (adps - 1);  ticks >>= adps;  ticks <<= adps;#endif  // ROUND_SAMPLE_INTERVAL  if (PIN_COUNT > BLOCK_MAX_COUNT || PIN_COUNT > PIN_NUM_DIM) {    error("Too many pins");  }  meta->pinCount = PIN_COUNT;  meta->recordEightBits = RECORD_EIGHT_BITS;  for (int i = 0; i < PIN_COUNT; i++) {    uint8_t pin = PIN_LIST[i];    if (pin >= NUM_ANALOG_INPUTS) {      error("Invalid Analog pin number");    }    meta->pinNumber[i] = pin;    // Set ADC reference and low three bits of analog pin number.    adcmux[i] = (pin & 7) | ADC_REF;    if (RECORD_EIGHT_BITS) {      adcmux[i] |= 1 << ADLAR;    }    // If this is the first pin, trigger on timer/counter 1 compare match B.    adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0;#ifdef MUX5    if (pin > 7) {      adcsrb[i] |= (1 << MUX5);    }#endif  // MUX5    adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps;    // First pin triggers on timer 1 compare match B rest are free running.    adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC;  }  // Setup timer1  TCCR1A = 0;  uint8_t tshift;  if (ticks < 0X10000) {    // no prescale, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);    tshift = 0;  } else if (ticks < 0X10000*8) {    // prescale 8, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);    tshift = 3;  } else if (ticks < 0X10000*64) {    // prescale 64, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10);    tshift = 6;  } else if (ticks < 0X10000*256) {    // prescale 256, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12);    tshift = 8;  } else if (ticks < 0X10000*1024) {    // prescale 1024, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10);    tshift = 10;  } else {    error("Sample Rate Too Slow");  }  // divide by prescaler  ticks >>= tshift;  // set TOP for timer reset  ICR1 = ticks - 1;  // compare for ADC start  OCR1B = 0;  // multiply by prescaler  ticks <<= tshift;  // Sample interval in CPU clock ticks.  meta->sampleInterval = ticks;  meta->cpuFrequency = F_CPU;  float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval;  Serial.print(F("Sample pins:"));  for (uint8_t i = 0; i < meta->pinCount; i++) {    Serial.print(' ');    Serial.print(meta->pinNumber[i], DEC);  }  Serial.println();  Serial.print(F("ADC bits: "));  Serial.println(meta->recordEightBits ? 8 : 10);  Serial.print(F("ADC clock kHz: "));  Serial.println(meta->adcFrequency/1000);  Serial.print(F("Sample Rate: "));  Serial.println(sampleRate);  Serial.print(F("Sample interval usec: "));  Serial.println(1000000.0/sampleRate);}//------------------------------------------------------------------------------// enable ADC and timer1 interruptsvoid adcStart() {  // initialize ISR  adcindex = 1;  isrBuf = nullptr;  isrOver = 0;  isrStop = false;  // Clear any pending interrupt.  ADCSRA |= 1 << ADIF;  // Setup for first pin.  ADMUX = adcmux[0];  ADCSRB = adcsrb[0];  ADCSRA = adcsra[0];  // Enable timer1 interrupts.  timerError = false;  timerFlag = false;  TCNT1 = 0;  TIFR1 = 1 << OCF1B;  TIMSK1 = 1 << OCIE1B;}//------------------------------------------------------------------------------inline void adcStop() {  TIMSK1 = 0;  ADCSRA = 0;}//------------------------------------------------------------------------------// Convert binary file to csv file.void binaryToCsv() {  uint8_t lastPct = 0;  block_t* pd;  metadata_t* pm;  uint32_t t0 = millis();  // Use fast buffered print class.  BufferedPrint<file_t, 64> bp(&csvFile);  block_t binBuffer[FIFO_DIM];  assert(sizeof(block_t) == sizeof(metadata_t));  binFile.rewind();  uint32_t tPct = millis();  bool doMeta = true;  while (!Serial.available()) {    pd = binBuffer;    int nb = binFile.read(binBuffer, sizeof(binBuffer));    if (nb < 0) {      error("read binFile failed");    }    size_t nd = nb/sizeof(block_t);    if (nd < 1) {      break;    }    if (doMeta) {      doMeta = false;      pm = (metadata_t*)pd++;      if (PIN_COUNT != pm->pinCount) {        error("Invalid pinCount");      }      bp.print(F("Interval,"));      float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency;      bp.print(intervalMicros, 4);      bp.println(F(",usec"));      for (uint8_t i = 0; i < PIN_COUNT; i++) {        if (i) {          bp.print(',');        }        bp.print(F("pin"));        bp.print(pm->pinNumber[i]);      }      bp.println();      if (nd-- == 1) {        break;      }    }    for (size_t i = 0; i < nd; i++, pd++) {      if (pd->overrun) {        bp.print(F("OVERRUN,"));        bp.println(pd->overrun);      }      for (size_t j = 0; j < pd->count; j += PIN_COUNT) {        for (size_t i = 0; i < PIN_COUNT; i++) {          if (!bp.printField(pd->data[i + j], i == (PIN_COUNT-1) ? '\n' : ',')) {            error("printField failed");          }        }      }    }    if ((millis() - tPct) > 1000) {      uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);      if (pct != lastPct) {        tPct = millis();        lastPct = pct;        Serial.print(pct, DEC);        Serial.println('%');      }    }  }  if (!bp.sync() || !csvFile.close()) {    error("close csvFile failed");  }  Serial.print(F("Done: "));  Serial.print(0.001*(millis() - t0));  Serial.println(F(" Seconds"));}//------------------------------------------------------------------------------void createBinFile() {  binFile.close();  while (sd.exists(binName)) {    char* p = strchr(binName, '.');    if (!p) {      error("no dot in filename");    }    while (true) {      p--;      if (p < binName || *p < '0' || *p > '9') {        error("Can't create file name");      }      if (p[0] != '9') {        p[0]++;        break;      }      p[0] = '0';    }  }  Serial.print(F("Opening: "));  Serial.println(binName);  if (!binFile.open(binName, O_RDWR | O_CREAT)) {    error("open binName failed");  }  Serial.print(F("Allocating: "));  Serial.print(MAX_FILE_SIZE_MiB);  Serial.println(F(" MiB"));  if (!binFile.preAllocate(MAX_FILE_SIZE)) {    error("preAllocate failed");  }}//------------------------------------------------------------------------------bool createCsvFile() {  char csvName[NAME_DIM];  if (!binFile.isOpen()) {    Serial.println(F("No current binary file"));    return false;  }  binFile.getName(csvName, sizeof(csvName));  char* dot = strchr(csvName, '.');  if (!dot) {    error("no dot in binName");  }  strcpy(dot + 1, "csv");  if (!csvFile.open(csvName, O_WRONLY|O_CREAT|O_TRUNC)) {    error("open csvFile failed");  }  Serial.print(F("Writing: "));  Serial.print(csvName);  Serial.println(F(" - type any character to stop"));  return true;}//------------------------------------------------------------------------------// log datavoid logData() {  uint32_t t0;  uint32_t t1;  uint32_t overruns =0;  uint32_t count = 0;  uint32_t maxLatencyUsec = 0;  size_t maxFifoUse = 0;  block_t fifoBuffer[FIFO_DIM];  adcInit((metadata_t*)fifoBuffer);  // Write metadata.  if (sizeof(metadata_t) != binFile.write(fifoBuffer, sizeof(metadata_t))) {    error("Write metadata failed");  }  fifoCount = 0;  fifoHead = 0;  fifoTail = 0;  fifoData = fifoBuffer;  // Initialize all blocks to save ISR overhead.  memset(fifoBuffer, 0, sizeof(fifoBuffer));  Serial.println(F("Logging - type any character to stop"));  // Wait for Serial Idle.  Serial.flush();  delay(10);  t0 = millis();  t1 = t0;  // Start logging interrupts.  adcStart();  while (1) {    uint32_t m;    noInterrupts();    size_t tmpFifoCount = fifoCount;    interrupts();    if (tmpFifoCount) {      block_t* pBlock = fifoData + fifoTail;      // Write block to SD.      m = micros();      if (sizeof(block_t) != binFile.write(pBlock, sizeof(block_t))) {        error("write data failed");      }      m = micros() - m;      t1 = millis();      if (m > maxLatencyUsec) {        maxLatencyUsec = m;      }      if (tmpFifoCount >maxFifoUse) {        maxFifoUse = tmpFifoCount;      }      count += pBlock->count;      // Add overruns and possibly light LED.      if (pBlock->overrun) {        overruns += pBlock->overrun;        if (ERROR_LED_PIN >= 0) {          digitalWrite(ERROR_LED_PIN, HIGH);        }      }      // Initialize empty block to save ISR overhead.      pBlock->count = 0;      pBlock->overrun = 0;      fifoTail = fifoTail < (FIFO_DIM - 1) ? fifoTail + 1 : 0;      noInterrupts();      fifoCount--;      interrupts();      if (binFile.curPosition() >= MAX_FILE_SIZE) {        // File full so stop ISR calls.        adcStop();        break;      }    }    if (timerError) {      error("Missed timer event - rate too high");    }    if (Serial.available()) {      // Stop ISR interrupts.      isrStop = true;    }    if (fifoCount == 0 && !adcActive()) {       break;    }  }  Serial.println();  // Truncate file if recording stopped early.  if (binFile.curPosition() < MAX_FILE_SIZE) {    Serial.println(F("Truncating file"));    Serial.flush();    if (!binFile.truncate()) {      error("Can't truncate file");    }  }  Serial.print(F("Max write latency usec: "));  Serial.println(maxLatencyUsec);  Serial.print(F("Record time sec: "));  Serial.println(0.001*(t1 - t0), 3);  Serial.print(F("Sample count: "));  Serial.println(count/PIN_COUNT);  Serial.print(F("Overruns: "));  Serial.println(overruns);  Serial.print(F("FIFO_DIM: "));  Serial.println(FIFO_DIM);  Serial.print(F("maxFifoUse: "));  Serial.println(maxFifoUse + 1);  // include ISR use.  Serial.println(F("Done"));}//------------------------------------------------------------------------------void openBinFile() {  char name[NAME_DIM];  serialClearInput();  Serial.println(F("Enter file name"));  if (!serialReadLine(name, sizeof(name))) {    return;  }  if (!sd.exists(name)) {    Serial.println(name);    Serial.println(F("File does not exist"));    return;  }  binFile.close();  if (!binFile.open(name, O_RDWR)) {    Serial.println(name);    Serial.println(F("open failed"));    return;  }  Serial.println(F("File opened"));}//------------------------------------------------------------------------------// Print data file to Serialvoid printData() {  block_t buf;  if (!binFile.isOpen()) {    Serial.println(F("No current binary file"));    return;  }  binFile.rewind();  if (binFile.read(&buf , sizeof(buf)) != sizeof(buf)) {    error("Read metadata failed");  }  Serial.println(F("Type any character to stop"));  delay(1000);  while (!Serial.available() &&         binFile.read(&buf , sizeof(buf)) == sizeof(buf)) {    if (buf.count == 0) {      break;    }    if (buf.overrun) {      Serial.print(F("OVERRUN,"));      Serial.println(buf.overrun);    }    for (size_t i = 0; i < buf.count; i++) {      Serial.print(buf.data[i], DEC);      if ((i+1)%PIN_COUNT) {        Serial.print(',');      } else {        Serial.println();      }    }  }  Serial.println(F("Done"));}//------------------------------------------------------------------------------void serialClearInput() {  do {    delay(10);  } while (Serial.read() >= 0);}//------------------------------------------------------------------------------bool serialReadLine(char* str, size_t size) {  size_t n = 0;  while(!Serial.available()) {  }  while (true) {    int c = Serial.read();    if (c < ' ') break;    str[n++] = c;    if (n >= size) {      Serial.println(F("input too long"));      return false;    }    uint32_t m = millis();    while (!Serial.available() && (millis() - m) < 100){}    if (!Serial.available()) break;  }  str[n] = 0;  return true;}//------------------------------------------------------------------------------void setup(void) {  if (ERROR_LED_PIN >= 0) {    pinMode(ERROR_LED_PIN, OUTPUT);  }  Serial.begin(9600);  while(!Serial) {}  Serial.println(F("Type any character to begin."));  while(!Serial.available()) {}  FillStack();  // Read the first sample pin to init the ADC.  analogRead(PIN_LIST[0]);#if !ENABLE_DEDICATED_SPI  Serial.println(F(    "\nFor best performance edit SdFatConfig.h\n"    "and set ENABLE_DEDICATED_SPI nonzero"));#endif  // !ENABLE_DEDICATED_SPI  // Initialize SD.  if (!sd.begin(SD_CONFIG)) {    error("sd.begin failed");  }#if USE_RTC  if (!rtc.begin()) {    error("rtc.begin failed");  }  if (!rtc.isrunning()) {    // Set RTC to sketch compile date & time.    // rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));    error("RTC is NOT running!");  } else {    Serial.println(F("RTC is running"));  }  // Set callback  FsDateTime::setCallback(dateTime);#endif  // USE_RTC}//------------------------------------------------------------------------------void loop(void) {  printUnusedStack();  // Read any Serial data.  do {    delay(10);  } while (Serial.available() && Serial.read() >= 0);  Serial.println();  Serial.println(F("type:"));  Serial.println(F("b - open existing bin file"));  Serial.println(F("c - convert file to csv"));  Serial.println(F("l - list files"));  Serial.println(F("p - print data to Serial"));  Serial.println(F("r - record ADC data"));  while(!Serial.available()) {    SysCall::yield();  }  char c = tolower(Serial.read());  Serial.println();  if (ERROR_LED_PIN >= 0) {    digitalWrite(ERROR_LED_PIN, LOW);  }  // Read any Serial data.  do {    delay(10);  } while (Serial.available() && Serial.read() >= 0);  if (c == 'b') {    openBinFile();  } else if (c == 'c') {    if (createCsvFile()) {      binaryToCsv();    }  } else if (c == 'l') {    Serial.println(F("ls:"));    sd.ls(&Serial, LS_DATE | LS_SIZE);  } else if (c == 'p') {    printData();  } else if (c == 'r') {    createBinFile();    logData();  } else {    Serial.println(F("Invalid entry"));  }}#else  // __AVR__#error This program is only for AVR.#endif  // __AVR__
 |