123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- /*
- *openPilot Log - A FOSS Pilot Logbook Application
- *Copyright (C) 2020 Felix Turowsky
- *
- *This program is free software: you can redistribute it and/or modify
- *it under the terms of the GNU General Public License as published by
- *the Free Software Foundation, either version 3 of the License, or
- *(at your option) any later version.
- *
- *This program is distributed in the hope that it will be useful,
- *but WITHOUT ANY WARRANTY; without even the implied warranty of
- *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- *GNU General Public License for more details.
- *
- *You should have received a copy of the GNU General Public License
- *along with this program. If not, see <https://www.gnu.org/licenses/>.
- */
- #include "calc.h"
- #include "dbman.cpp"
- /*!
- * \brief calc::blocktime Calculates Block Time for a given departure and arrival time
- * \param tofb QTime Time Off Blocks
- * \param tonb QTime Time On Blocks
- * \return Block Time in minutes
- */
- QTime calc::blocktime(QTime tofb, QTime tonb)
- {
- if(tonb > tofb)// landing same day
- {
- QTime blocktimeout(0,0); // initialise return value at midnight
- int blockseconds = tofb.secsTo(tonb); // returns seconds between 2 time objects
- blocktimeout = blocktimeout.addSecs(blockseconds);
- return blocktimeout;
- } else // landing next day
- {
- QTime midnight(0,0);
- QTime blocktimeout(0,0); // initialise return value at midnight
- int blockseconds = tofb.secsTo(midnight); // returns seconds passed until midnight
- blocktimeout = blocktimeout.addSecs(blockseconds);
- blockseconds = midnight.secsTo(tonb); // returns seconds passed after midnight
- blocktimeout = blocktimeout.addSecs(blockseconds);
- return blocktimeout;
- }
- }
- /*!
- * \brief calc::minutes_to_string Converts database time to String Time
- * \param blockminutes int from database
- * \return String hh:mm
- */
- QString calc::minutes_to_string(QString blockminutes)
- {
- int minutes = blockminutes.toInt();
- QString hour = QString::number(minutes/60);
- if (hour.size() < 2) {hour.prepend("0");}
- QString minute = QString::number(minutes % 60);
- if (minute.size() < 2) {minute.prepend("0");}
- QString blocktime = hour + ":" + minute;
- return blocktime;
- };
- /*!
- * \brief calc::time_to_minutes converts QTime to int minutes
- * \param time QTime
- * \return int time as number of minutes
- */
- int calc::time_to_minutes(QTime time)
- {
- QString timestring = time.toString("hh:mm");
- int minutes = (timestring.left(2).toInt()) * 60;
- minutes += timestring.right(2).toInt();
- return minutes;
- }
- /*!
- * \brief calc::string_to_minutes Converts String Time to String Number of Minutes
- * \param timestring "hh:mm"
- * \return String number of minutes
- */
- int calc::string_to_minutes(QString timestring)
- {
- int minutes = (timestring.left(2).toInt()) * 60;
- minutes += timestring.right(2).toInt();
- timestring = QString::number(minutes);
- return minutes;
- }
- /*!
- * The purpose of the following functions is to provide functionality enabling the calculation of
- * night flying time. EASA defines night as follows:
- *
- * ‘Night’ means the period between the end of evening civil twilight and the beginning of
- * morning civil twilight or such other period between sunset and sunrise as may be prescribed
- * by the appropriate authority, as defined by the Member State.
- *
- *
- *
- * This is the proccess of calculating night time in this program:
- *
- * 1) A flight from A to B follows the Great Circle Track along these two points
- * at an average cruising height of 11km. (~FL 360)
- *
- * 2) Any time the Elevation of the Sun at the current position is less
- * than -6 degrees, night conditions are present.
- * 3) The calculation is performed for every minute of flight time.
- *
- * In general, input and output for most functions is decimal degrees, like coordinates
- * are stowed in the airports table. Calculations are normally done using
- * Radians.
- */
- /*!
- * \brief radToDeg Converts radians to degrees
- * \param rad
- * \return degrees
- */
- double calc::radToDeg(double rad)
- {
- double deg = rad * (180 / M_PI);
- return deg;
- }
- /*!
- * \brief degToRad Converts degrees to radians
- * \param deg
- * \return radians
- */
- double calc::degToRad(double deg)
- {
- double rad = deg * (M_PI / 180);
- return rad;
- }
- /*!
- * \brief radToNauticalMiles Convert Radians to nautical miles
- * \param rad
- * \return nautical miles
- */
- double calc::radToNauticalMiles(double rad)
- {
- double nm = rad * 3440.06479482;
- return nm;
- }
- /*!
- * \brief greatCircleDistance Calculates Great Circle distance between two coordinates, return in Radians.
- * \param lat1 Location Latitude in degrees -90:90 ;S(-) N(+)
- * \param lon1 Location Longitude in degrees -180:180 W(-) E(+)
- * \param lat2 Location Latitude in degrees -90:90 ;S(-) N(+)
- * \param lon2 Location Longitude in degrees -180:180 W(-) E(+)
- * \return
- */
- double calc::greatCircleDistance(double lat1, double lon1, double lat2, double lon2)
- {
- // Converting Latitude and Longitude to Radians
- lat1 = degToRad(lat1);
- lon1 = degToRad(lon1);
- lat2 = degToRad(lat2);
- lon2 = degToRad(lon2);
- // Haversine Formula
- double deltalon = lon2 - lon1;
- double deltalat = lat2 - lat1;
- double result = pow(sin(deltalat / 2), 2) +
- cos(lat1) * cos(lat2) * pow(sin(deltalon / 2), 2);
- result = 2 * asin(sqrt(result));
- return result;
- }
- /*!
- * \brief Calculates a list of points (lat,lon) along the Great Circle between two points.
- * The points are spaced equally, one minute of block time apart.
- * \param lat1 Location Latitude in degrees -90:90 ;S(-) N(+)
- * \param lon1 Location Longitude in degrees -180:180 W(-) E(+)
- * \param lat2 Location Latitude in degrees -90:90 ;S(-) N(+)
- * \param lon2 Location Longitude in degrees -180:180 W(-) E(+)
- * \param tblk Total Blocktime in minutes
- * \return coordinates {lat,lon} along the Great Circle Track
- */
- QVector<QVector<double>> calc::intermediatePointsOnGreatCircle(double lat1, double lon1, double lat2, double lon2, int tblk)
- {
- double d = greatCircleDistance(lat1, lon1, lat2, lon2); //calculate distance (radians)
- // Converting Latitude and Longitude to Radians
- lat1 = degToRad(lat1);
- lon1 = degToRad(lon1);
- lat2 = degToRad(lat2);
- lon2 = degToRad(lon2);
- //loop for creating one minute steps along the Great Circle
- // 0 is departure point, 1 is end point
- QVector<QVector<double>> coordinates;
- double fraction = 1.0/tblk;
- for(int i = 0; i <= tblk; i++) {
- // Calculating intermediate point for fraction of distance
- double A=sin((1-fraction * i) * d)/sin(d);
- double B=sin(fraction * i * d)/sin(d);
- double x = A*cos(lat1) * cos(lon1) + B * cos(lat2) * cos(lon2);
- double y = A*cos(lat1) * sin(lon1) + B * cos(lat2) * sin(lon2);
- double z = A*sin(lat1) + B * sin(lat2);
- double lat = atan2(z, sqrt( pow(x, 2) + pow(y, 2) ));
- double lon = atan2(y, x);
- QVector<double> coordinate = {lat,lon};
- coordinates.append(coordinate);
- }
- return coordinates;
- }
- /*!
- * \brief Calculates solar elevation angle for a given point in time and latitude/longitude coordinates
- *
- * It is based on the formulas found here: http://stjarnhimlen.se/comp/tutorial.html#5
- *
- * Credit also goes to Darin C. Koblick for his matlab implementation of various of these
- * formulas and to Kevin Godden for porting it to C++.
- *
- * Darin C. Koblock: https://www.mathworks.com/matlabcentral/profile/authors/1284781
- * Kevin Godden: https://www.ridgesolutions.ie/index.php/about-us/
- *
- * \param utc_time_point - QDateTime (UTC) for which the elevation is calculated
- * \param lat - Location Latitude in degrees -90:90 ;S(-) N(+)
- * \param lon - Location Longitude in degrees -180:180 W(-) E(+)
- * \return elevation - double of solar elevation in degrees.
- */
- double calc::solarElevation(QDateTime utc_time_point, double lat, double lon)
- {
- double Alt = 11; // I am taking 11 kilometers as an average cruising height for a commercial passenger airplane.
- // convert current DateTime Object to a J2000 value used in the calculation
- double d = utc_time_point.date().toJulianDay() - 2451544 + utc_time_point.time().hour()/24.0 + utc_time_point.time().minute()/1440.0;
- // Orbital Elements (in degress)
- double w = 282.9404 + 4.70935e-5 * d; // (longitude of perihelion)
- double e = 0.016709 - 1.151e-9 * d; // (eccentricity)
- double M = fmod(356.0470 + 0.9856002585 * d, 360.0); // (mean anomaly, needs to be between 0 and 360 degrees)
- double oblecl = 23.4393 - 3.563e-7*d; // (Sun's obliquity of the ecliptic)
- double L = w + M; // (Sun's mean longitude)
- // auxiliary angle
- double E = M + (180 / M_PI)*e*sin(M*(M_PI / 180))*(1 + e*cos(M*(M_PI / 180)));
- // The Sun's rectangular coordinates in the plane of the ecliptic
- double x = cos(E*(M_PI / 180)) - e;
- double y = sin(E*(M_PI / 180))*sqrt(1 - pow(e, 2));
- // find the distance and true anomaly
- double r = sqrt(pow(x,2) + pow(y,2));
- double v = atan2(y, x)*(180 / M_PI);
- // find the longitude of the sun
- double solarlongitude = v + w;
- // compute the ecliptic rectangular coordinates
- double xeclip = r*cos(solarlongitude*(M_PI / 180));
- double yeclip = r*sin(solarlongitude*(M_PI / 180));
- double zeclip = 0.0;
- //rotate these coordinates to equitorial rectangular coordinates
- double xequat = xeclip;
- double yequat = yeclip*cos(oblecl*(M_PI / 180)) + zeclip * sin(oblecl*(M_PI / 180));
- double zequat = yeclip*sin(23.4406*(M_PI / 180)) + zeclip * cos(oblecl*(M_PI / 180));
- // convert equatorial rectangular coordinates to RA and Decl:
- r = sqrt(pow(xequat, 2) + pow(yequat, 2) + pow(zequat, 2)) - (Alt / 149598000); //roll up the altitude correction
- double RA = atan2(yequat, xequat)*(180 / M_PI);
- double delta = asin(zequat / r)*(180 / M_PI);
- // GET UTH time
- double UTH = utc_time_point.time().hour() + utc_time_point.time().minute()/60.0 + utc_time_point.time().second()/3600.0;
- // Calculate local siderial time
- double GMST0 = fmod(L + 180, 360.0) / 15;
- double SIDTIME = GMST0 + UTH + lon / 15;
- // Replace RA with hour angle HA
- double HA = (SIDTIME*15 - RA);
- // convert to rectangular coordinate system
- x = cos(HA*(M_PI / 180))*cos(delta*(M_PI / 180));
- y = sin(HA*(M_PI / 180))*cos(delta*(M_PI / 180));
- double z = sin(delta*(M_PI / 180));
- // rotate this along an axis going east - west.
- double zhor = x*sin((90 - lat)*(M_PI / 180)) + z*cos((90 - lat)*(M_PI / 180));
- // Find the Elevation
- double elevation = asin(zhor)*(180 / M_PI);
- return elevation;
- }
- /*!
- * \brief Calculates which portion of a flight was conducted in night conditions.
- * \param dept - ICAO 4-letter code of Departure Airport
- * \param dest - ICAO 4-letter Code of Destination Airport
- * \param departureTime - QDateTime of Departure (UTC)
- * \param tblk - Total block time in minutes
- * \return Total number of minutes under night flying conditions
- */
- int calc::calculateNightTime(QString dept, QString dest, QDateTime departureTime, int tblk)
- {
- double deptLat = db::retreiveIcaoCoordinates(dept)[0];
- qDebug() << "calc::calculateNightTime deptLat = " << deptLat;
- double deptLon = db::retreiveIcaoCoordinates(dept)[1];
- qDebug() << "calc::calculateNightTime deptLon = " << deptLon;
- double destLat = db::retreiveIcaoCoordinates(dest)[0];
- qDebug() << "calc::calculateNightTime destLat = " << destLat;
- double destLon = db::retreiveIcaoCoordinates(dest)[1];
- qDebug() << "calc::calculateNightTime destLon = " << destLon;
- QVector<QVector<double>> route = intermediatePointsOnGreatCircle(deptLat, deptLon, destLat, destLon, tblk);
- int nightTime = 0;
- for(int i = 0; i < tblk ; i++) {
- if(solarElevation(departureTime.addSecs(60*i),radToDeg(route[i][0]),radToDeg(route[i][1])) < -0.6) {
- nightTime ++;
- }
- }
- qDebug() << "calc::calculateNightTime result: " << nightTime << " minutes night flying time.";
- return nightTime;
- }
|