123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563 |
- module abcbus (
- input rst_n,
- input sys_clk,
- input sdram_clk, // Assumed to be a multiple of sys_clk
- input stb_1mhz, // 1-2 MHz sys_clk strobe
- // CPU interface
- input abc_valid, // Control/status registers
- input map_valid, // Memory map
- input [31:0] cpu_addr,
- input [31:0] cpu_wdata,
- input [3:0] cpu_wstrb,
- output [31:0] cpu_rdata, // For the ABC-bus control
- output [31:0] cpu_rdata_map, // For the map RAM
- output reg irq,
- // ABC bus
- input abc_clk,
- input [15:0] abc_a,
- inout [7:0] abc_d,
- output reg abc_d_oe,
- input abc_rst_n,
- input abc_cs_n,
- input [4:0] abc_out_n,
- input [1:0] abc_inp_n,
- input abc_xmemfl_n,
- input abc_xmemw800_n, // Memory write strobe (ABC800)
- input abc_xmemw80_n, // Memory write strobe (ABC80)
- input abc_xinpstb_n, // I/O read strobe (ABC800)
- input abc_xoutpstb_n, // I/O write strobe (ABC80)
- // The following are inverted versus the bus IF
- // the corresponding MOSFETs are installed
- output abc_rdy_x, // RDY = WAIT#
- output abc_resin_x, // System reset request
- output abc_int80_x, // System INT request (ABC80)
- output abc_int800_x, // System INT request (ABC800)
- output abc_nmi_x, // System NMI request (ABC800)
- output abc_xm_x, // System memory override (ABC800)
- // Host/device control
- output abc_master, // 1 = host, 0 = device
- output reg abc_a_oe,
- // Bus isolation
- output abc_d_ce_n,
- // ABC-bus extension header
- // (Note: cannot use an array here because HC and HH are
- // input only.)
- inout exth_ha,
- inout exth_hb,
- input exth_hc,
- inout exth_hd,
- inout exth_he,
- inout exth_hf,
- inout exth_hg,
- input exth_hh,
- // SDRAM interface
- output [24:0] sdram_addr,
- input [7:0] sdram_rd,
- output reg sdram_rrq,
- input sdram_rack,
- input sdram_rready,
- output [7:0] sdram_wd,
- output reg sdram_wrq,
- input sdram_wack
- );
- // Set if MOSFETs Q1-Q6 are installed rather than the corresponding
- // resistors. BOTH CANNOT BE INSTALLED AT THE SAME TIME.
- parameter [6:1] mosfet_installed = 6'b111_111;
- parameter [0:0] exth_reversed = 1'b0;
- // Synchronizer for ABC-bus input signals; also changes
- // the sense to positive logic where applicable
- wire abc_clk_s;
- wire [15:0] abc_a_s;
- wire [7:0] abc_di;
- wire abc_rst_s;
- wire abc_cs_s;
- wire [4:0] abc_out_s;
- wire [1:0] abc_inp_s;
- wire abc_xmemfl_s;
- wire abc_xmemw800_s;
- wire abc_xmemw80_s;
- wire abc_xinpstb_s;
- wire abc_xoutpstb_s;
- synchronizer #( .width(39) ) abc_synchro
- (
- .rst_n ( rst_n ),
- .clk ( sys_clk ),
- .d ( { abc_clk, abc_a, abc_d, ~abc_rst_n, ~abc_cs_n,
- ~abc_out_n, ~abc_inp_n, ~abc_xmemfl_n, ~abc_xmemw800_n,
- ~abc_xmemw80_n, ~abc_xinpstb_n, ~abc_xoutpstb_n } ),
- .q ( { abc_clk_s, abc_a_s, abc_di, abc_rst_s, abc_cs_s,
- abc_out_s, abc_inp_s, abc_xmemfl_s, abc_xmemw800_s,
- abc_xmemw80_s, abc_xinpstb_s, abc_xoutpstb_s } )
- );
- assign abc_master = 1'b0; // Only device mode supported
- assign abc_d_ce_n = 1'b0; // Do not isolate busses
- reg abc_clk_active;
- // On ABC800, only one of XINPSTB# or XOUTPSTB# will be active;
- // on ABC80 they will either be 00 or ZZ; in the latter case pulled
- // low by external resistors.
- wire abc80 = abc_xinpstb_s & abc_xoutpstb_s;
- wire abc800 = ~abc80;
- // Memory and I/O read/write strobes for ABC-bus
- reg abc_xmemrd;
- reg abc_xmemwr;
- reg [1:0] abc_inp;
- reg [4:0] abc_out;
- reg abc_rst;
- reg abc_cs;
- reg [3:1] abc_stb; // Delayed strobes
- always @(posedge sdram_clk)
- begin
- abc_xmemrd <= abc_clk_active & abc_xmemfl_s;
- abc_xmemwr <= abc_clk_active &
- (abc800 ? abc_xmemw800_s : abc_xmemw80_s);
- abc_inp <= abc_inp_s & {2{abc_clk_active}};
- abc_out <= abc_out_s & {5{abc_clk_active}};
- abc_rst <= abc_rst_s & abc_clk_active;
- abc_cs <= abc_cs_s & abc_clk_active;
- abc_stb <= { abc_stb, |{abc_inp, abc_out, abc_rst,
- abc_cs, abc_xmemrd, abc_xmemwr} };
- end
- reg [7:0] abc_do;
- assign abc_d = abc_d_oe ? abc_do : 8'hzz;
- reg [8:0] ioselx;
- wire iosel_en = ioselx[8];
- wire iosel = ioselx[5:0];
- // ABC-bus I/O select
- always @(negedge rst_n or posedge sdram_clk)
- if (~rst_n)
- ioselx <= 9'b0;
- else if (abc_rst)
- ioselx <= 9'b0;
- else if (abc_cs)
- ioselx <= { 1'b1, abc_di };
- // Open drain signals with optional MOSFETs
- reg abc_wait = 1'b0;
- reg abc_int = 1'b0;
- reg abc_nmi = 1'b0;
- reg abc_resin = 1'b0;
- reg abc_xm = 1'b0;
- function reg opt_mosfet(input signal, input mosfet);
- if (mosfet)
- opt_mosfet = signal;
- else
- opt_mosfet = signal ? 1'b0 : 1'bz;
- endfunction // opt_mosfet
- assign abc_int80_x = opt_mosfet(abc_int & abc80, mosfet_installed[1]);
- assign abc_rdy_x = opt_mosfet(abc_wait, mosfet_installed[2]);
- assign abc_nmi_x = opt_mosfet(abc_nmi, mosfet_installed[3]);
- assign abc_resin_x = opt_mosfet(abc_resin, mosfet_installed[4]);
- assign abc_int800_x = opt_mosfet(abc_int & abc800, mosfet_installed[5]);
- assign abc_xm_x = opt_mosfet(abc_xm, mosfet_installed[6]);
- // Detect ABC-bus clock: need a minimum frequency of 84/64 MHz
- // to be considered live.
- reg [2:0] abc_clk_ctr;
- reg [1:0] abc_clk_q;
- always @(negedge rst_n or posedge sys_clk)
- if (~rst_n)
- begin
- abc_clk_q <= 2'b0;
- abc_clk_ctr <= 3'b0;
- abc_clk_active <= 1'b0;
- end
- else
- begin
- abc_clk_q <= { abc_clk_q[0], abc_clk_s };
- case ( { abc_clk_q == 2'b10, stb_1mhz } )
- 5'b10: begin
- if (abc_clk_ctr == 3'b111)
- abc_clk_active <= 1'b1;
- else
- abc_clk_ctr <= abc_clk_ctr + 1'b1;
- end
- 5'b01: begin
- if (abc_clk_ctr == 3'b000)
- abc_clk_active <= 1'b0;
- else
- abc_clk_ctr <= abc_clk_ctr - 1'b1;
- end
- default: begin
- // nothing
- end
- endcase // case ( {(abc_clk_q == 2'10), sys_clk_stb[6]} )
- end // else: !if(~rst_n)
- // ABC-bus extension header (exth_c and exth_h are input only)
- // The naming of pins is kind of nonsensical:
- //
- // +3V3 - 1 2 - +3V3
- // HA - 3 4 - HE
- // HB - 5 6 - HG
- // HC - 7 8 - HH
- // HD - 9 10 - HF
- // GND - 11 12 - GND
- //
- // This layout allows the header to be connected on either side
- // of the board. This logic assigns the following names to the pins;
- // if the ext_reversed is set to 1 then the left and right sides
- // are flipped.
- //
- // +3V3 - 1 2 - +3V3
- // exth[0] - 3 4 - exth[1]
- // exth[2] - 5 6 - exth[3]
- // exth[6] - 7 8 - exth[7]
- // exth[4] - 9 10 - exth[5]
- // GND - 11 12 - GND
- wire [7:0] exth_d; // Input data
- wire [5:0] exth_q; // Output data
- wire [5:0] exth_oe; // Output enable
- assign exth_d[0] = exth_reversed ? exth_he : exth_ha;
- assign exth_d[1] = exth_reversed ? exth_ha : exth_he;
- assign exth_d[2] = exth_reversed ? exth_hg : exth_hb;
- assign exth_d[3] = exth_reversed ? exth_hb : exth_hg;
- assign exth_d[4] = exth_reversed ? exth_hf : exth_hd;
- assign exth_d[5] = exth_reversed ? exth_hd : exth_hf;
- assign exth_d[6] = exth_reversed ? exth_hh : exth_hc;
- assign exth_d[7] = exth_reversed ? exth_hc : exth_hh;
- wire [2:0] erx = { 2'b00, exth_reversed };
- assign exth_ha = exth_oe[3'd0 ^ erx] ? exth_q[3'd0 ^ erx] : 1'bz;
- assign exth_he = exth_oe[3'd1 ^ erx] ? exth_q[3'd1 ^ erx] : 1'bz;
- assign exth_hb = exth_oe[3'd2 ^ erx] ? exth_q[3'd2 ^ erx] : 1'bz;
- assign exth_hg = exth_oe[3'd3 ^ erx] ? exth_q[3'd3 ^ erx] : 1'bz;
- assign exth_hd = exth_oe[3'd4 ^ erx] ? exth_q[3'd4 ^ erx] : 1'bz;
- assign exth_hf = exth_oe[3'd5 ^ erx] ? exth_q[3'd5 ^ erx] : 1'bz;
- assign exth_q = 6'b0;
- assign exth_oe = 6'b0;
- // ABC SDRAM interface
- //
- // Memory map for ABC-bus memory references.
- // 512 byte granularity for memory (registers 0-127),
- // one input and one output queue per select code for I/O (128-255).
- //
- // bit [24:0] = SDRAM address.
- // bit [25] = write enable ( bit 30 from CPU )
- // bit [26] = read enable ( bit 31 from CPU )
- // bit [35:27] = DMA count for I/O ( separate register 384-511 from CPU )
- //
- // Accesses from the internal CPU supports 32-bit accesses only!
- //
- // If the DMA counter is exhausted, or I/O operations other than port 0,
- // I/O is instead directed to a memory area pointed to by the iomem_base
- // register as:
- // bit [24:4] = iomem_base
- // bit [3] = read
- // bit [2:0] = port
- //
- // However, the rd and wr enable bits in the I/O map still apply.
- //
- wire [7:0] abc_map_addr =
- abc_out_s[0] ? { 1'b1, iosel, 1'b0 } :
- abc_inp_s[0] ? { 1'b1, iosel, 1'b1 } :
- { 1'b0, abc_a_s[15:9] };
- wire [35:0] rdata_abcmemmap;
- wire [35:0] abc_memmap_rd;
- //
- // For I/O, don't allow the read/write enables to conflict with
- // the direction of the I/O.
- //
- wire [1:0] abcmap_masked_rdwr = cpu_wdata[31:30] &
- { ~cpu_addr[9] | ~cpu_addr[2],
- ~cpu_addr[9] | cpu_addr[2] };
- wire [8:0] next_dma_count = abc_dma_count - 1'b1;
- wire next_dma_empty = ~&next_dma_count;
- abcmapram abcmapram (
- .aclr ( ~rst_n ),
- .clock ( sdram_clk ),
- .address_a ( abc_map_addr ),
- .data_a ( { next_dma_count,
- abc_rden, abc_wren,
- abc_memaddr + 1'b1 } ),
- .wren_a ( abc_dma_update ),
- .byteena_a ( 4'b1111 ),
- .q_a ( abc_memmap_rd ),
- .address_b ( cpu_addr[9:2] ),
- .data_b ( { cpu_wdata[8:0],
- abcmap_masked_rdwr,
- cpu_wdata[24:0] } ),
- .wren_b ( map_valid & ~cpu_addr[11] & cpu_wstrb[0] ),
- .byteena_b ( { cpu_addr[10],
- {3{~cpu_addr[10]}} } ),
- .q_b ( rdata_abcmemmap )
- );
- // Note: added one extra cycle of pipelining here for timing
- reg [24:0] abc_memaddr;
- reg [8:0] abc_dma_count;
- reg abc_dma_nzero;
- reg abc_rden;
- reg abc_wren;
- always @(negedge rst_n or posedge sdram_clk)
- if (~rst_n)
- begin
- abc_dma_count <= 9'b0;
- abc_dma_nzero <= 1'b0;
- abc_rden <= 1'b0;
- abc_wren <= 1'b0;
- abc_memaddr <= 26'b0;
- end
- else
- begin
- { abc_dma_count, abc_rden, abc_wren, abc_memaddr } <= abc_memmap_rd;
- abc_dma_nzero <= |abc_memmap_rd[35:27]; // -> |abc_dma_count
- end
- //
- // RAM for the status register (INP 1). This is in a separate SRAM
- // so that it can be adjusted for certain DMA events.
- // bit [7:0] - status register value
- // bit [8] - clear bit 0 on read DMA empty
- // bit [9] - clear bit 0 on write DMA empty
- // bit [10] - clear bit 1 on write DMA empty
- // bit [11] - clear bit 7 on any DMA event
- //
- wire [15:0] status_out;
- wire [15:0] rdata_status;
- statusram statusram (
- .aclr ( ~rst_n ),
- .clock ( sdram_clk ),
- .address_a ( iosel ),
- .data_a ( status_out &
- ~{ 4'hf0, status_out[11], 5'b00000,
- status_out[10] & abc_out_s[0]
- & next_dma_empty,
- ((status_out[9] & abc_out_s[0]) |
- (status_out[8] & abc_inp_s[0]))
- & next_dma_empty } ),
- .wren_a ( abc_dma_update ),
- .q_a ( status_out ),
- .address_b ( cpu_addr[7:2] ),
- .data_b ( cpu_wdata[11:0] ),
- .q_b ( rdata_status ),
- .wren_b ( map_valid & cpu_addr[11] & cpu_wstrb[0] )
- );
- assign cpu_rdata_map = cpu_addr[11] ?
- { 16'b0, rdata_status } :
- cpu_addr[10] ?
- { 23'b0, rdata_abcmemmap[35:27] } :
- { rdata_abcmemmap[26:25], 5'b0,
- rdata_abcmemmap[24:0] };
- reg [24:4] abc_iobase;
- reg abc_memrd_en;
- reg abc_memwr_en;
- reg abc_dma_en;
- reg abc_iowr_en;
- reg abc_iord_en;
- reg abc_do_memrd;
- reg abc_do_memwr;
- reg abc_racked;
- reg abc_wacked;
- wire abc_rack;
- wire abc_wack;
- wire abc_rready;
- always @(posedge sdram_clk or negedge rst_n)
- if (~rst_n)
- begin
- abc_memrd_en <= 1'b0;
- abc_memwr_en <= 1'b0;
- abc_dma_en <= 1'b0;
- abc_iord_en <= 1'b0;
- abc_iowr_en <= 1'b0;
- abc_do_memrd <= 1'b0;
- abc_do_memwr <= 1'b0;
- sdram_rrq <= 1'b0;
- sdram_wrq <= 1'b0;
- abc_racked <= 1'b0;
- abc_wacked <= 1'b0;
- abc_dma_update <= 1'b0;
- end
- else
- begin
- // Careful with the registering here: need to make sure
- // abcmapram is caught up for I/O; for memory the address
- // will have been stable for some time
- abc_memwr_en <= abc_xmemwr;
- abc_memrd_en <= abc_xmemrd;
- abc_dma_en <= iosel_en & (abc_out[0] | abc_inp[0]) & abc_stb[3] &
- abc_dma_nzero;
- abc_iowr_en <= iosel_en & |abc_out & abc_stb[3];
- abc_iord_en <= iosel_en & |abc_inp & abc_stb[3];
- abc_do_memrd <= abc_rden & (abc_memrd_en |
- (abc_iord_en & abc_inp[0]));
- abc_do_memwr <= abc_wren & (abc_memwr_en | abc_iowr_en);
- abc_racked <= abc_do_memrd & (sdram_rack | abc_racked);
- abc_wacked <= abc_do_memwr & (sdram_wack | abc_wacked);
- sdram_rrq <= abc_do_memrd & ~abc_racked;
- sdram_wrq <= abc_do_memwr & ~abc_wacked;
- // This will be true for one cycle only, which is what we want
- abc_dma_update <= abc_dma_en &
- ((sdram_rrq & abc_racked) |
- (sdram_wrq & abc_wacked));
- end // else: !if(~rst_n)
- assign sdram_addr =
- (abc_dma_en & |abc_dma_count) ? abc_memaddr :
- (abc_iord_en|abc_iowr_en) ? { abc_iobase, |abc_inp_s, abc_a_s[2:0] } :
- { abc_memaddr[24:9], abc_a_s[8:0] };
- assign sdram_wd = abc_di;
- // I/O status bits: sets the irq_status bits (sticky, write-1-clear)
- // The RST# (INP 7) and CS# (OUT 1) signals are always valid
- // regardless of the current select code; OUT 0/INP 0 only
- // set the bit once the DMA counter reaches or already is zero.
- wire [7:0] abc_inpflag = { abc_rst, 5'b00000,
- abc_iord_en & abc_rden & abc_inp[1],
- abc_iord_en & abc_rden & ~abc_dma_nzero & abc_inp[0] };
- wire [7:0] abc_outflag = { 2'b00,
- {4{abc_iowr_en & abc_wren}} & abc_out[4:1],
- abc_cs,
- abc_iowr_en & abc_wren & ~abc_dma_nzero & abc_out[0] };
- // DMA status register: set on *any* DMA access.
- // bit 0 = out DMA; bit 1 = in DMA.
- wire [1:0] abc_dmaflag = { abc_iord_en & abc_rden & abc_dma_en,
- abc_iowr_en & abc_wren & abc_dma_en };
- //
- // ABC-bus data bus handling
- //
- always @(posedge sdram_clk or negedge rst_n)
- if (~rst_n)
- begin
- abc_do <= 8'hxx;
- abc_d_oe <= 1'b0;
- end
- else if (abc_inp[1] & abc_iord_en & abc_rden)
- begin
- abc_do <= status_out;
- abc_d_oe <= 1'b1;
- end
- else if (abc_racked & sdram_rready)
- begin
- abc_do <= sdram_rd;
- abc_d_oe <= 1'b1;
- end
- else
- begin
- abc_do <= 8'hxx;
- abc_d_oe <= 1'b0;
- end
- //
- // ABC-bus control/status registers
- // All these registers are 32-bit access only except the I/O status
- // register (which is write-1-clear.)
- //
- reg clear_irq;
- reg [31:0] irq_mask;
- always @(posedge sys_clk or negedge rst_n)
- if (~rst_n)
- begin
- abc_iobase <= 20'bx;
- irq_mask <= 32'b0;
- clear_irq <= 1'b0;
- // abc_resin, nmi, int and wait are deliberately not affected
- // by an internal CPU reset. They are, however, initialized
- // to 0 on a CPU init (see above.)
- end
- else
- begin
- clear_irq <= 1'b0;
- if (abc_valid & cpu_wstrb[0])
- begin
- casez (cpu_addr[5:2])
- 5'b??010:
- abc_iobase <= cpu_wdata[24:4];
- 5'b??011:
- { abc_resin, abc_nmi, abc_int, abc_wait } <= cpu_wdata[3:0];
- 5'b??100:
- irq_mask <= cpu_wdata;
- 5'b??101:
- clear_irq <= 1'b1;
- default:
- /* do nothing */ ;
- endcase // casez (cpu_addr[5:2])
- end // if (abc_valid & cpu_wstrb[0])
- end
- reg [2:0] abc_status[0:1];
- always @(posedge sys_clk)
- begin
- abc_status[0] <= { 5'b0, abc800, abc_rst_s, abc_clk_active };
- abc_status[1] <= abc_status[0];
- end
- wire [31:0] irq_status_in = { 5'b0, abc_status[1] ^ abc_status[0],
- 6'b0, abc_dmaflag,
- abc_inpflag,
- abc_outflag };
- reg [31:0] irq_status;
- wire [31:0] irq_status_mask = 32'h07_03_83_3f; // Valid status bits
- always @(negedge rst_n or posedge sys_clk)
- if (~rst_n)
- irq_status <= 32'b0;
- else
- irq_status <= ( irq_status_in & irq_status_mask ) |
- (irq_status & ~({32{clear_irq}} & cpu_wdata));
- // Level triggered IRQ
- always @(negedge rst_n or posedge sys_clk)
- if (~rst_n)
- irq <= 1'b0;
- else
- irq <= |(irq_status & irq_mask);
- // Read MUX
- always_comb
- casez (cpu_addr[5:2])
- 5'b00000: cpu_rdata = { 24'b0, abc_status[0] };
- 5'b00001: cpu_rdata = { 23'b0, ~iosel_en, ioselx[7:0] };
- 5'b00010: cpu_rdata = abc_iobase;
- 5'b00011: cpu_rdata = { 28'b0, abc_resin, abc_nmi, abc_int, abc_wait };
- 5'b00100: cpu_rdata = irq_mask & irq_status_mask;
- 5'b00101: cpu_rdata = irq_status;
- default: cpu_rdata = 32'bx;
- endcase // casez (cpu_addr[5:2])
- endmodule // abcbus
|