| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 | module abcbus (	       input	     rst_n,	       input	     sys_clk,	       input	     sdram_clk, // Assumed to be a multiple of sys_clk	       input	     stb_1mhz, // 1-2 MHz sys_clk strobe	       // CPU interface	       input	     abc_valid, // Control/status registers	       input	     map_valid, // Memory map	       input [31:0]  cpu_addr,	       input [31:0]  cpu_wdata,	       input [3:0]   cpu_wstrb,	       output [31:0] cpu_rdata, // For the ABC-bus control	       output [31:0] cpu_rdata_map, // For the map RAM	       output reg    irq,	       // ABC bus	       input	     abc_clk,	       input [15:0]  abc_a,	       inout [7:0]   abc_d,	       output reg    abc_d_oe,	       input	     abc_rst_n,	       input	     abc_cs_n,	       input [4:0]   abc_out_n,	       input [1:0]   abc_inp_n,	       input	     abc_xmemfl_n,	       input	     abc_xmemw800_n, // Memory write strobe (ABC800)	       input	     abc_xmemw80_n, // Memory write strobe (ABC80)	       input	     abc_xinpstb_n, // I/O read strobe (ABC800)	       input	     abc_xoutpstb_n, // I/O write strobe (ABC80)	       // The following are inverted versus the bus IF	       // the corresponding MOSFETs are installed	       output	     abc_rdy_x, // RDY = WAIT#	       output	     abc_resin_x, // System reset request	       output	     abc_int80_x, // System INT request (ABC80)	       output	     abc_int800_x, // System INT request (ABC800)	       output	     abc_nmi_x, // System NMI request (ABC800)	       output	     abc_xm_x, // System memory override (ABC800)	       // Host/device control	       output	     abc_host, // 1 = host, 0 = device	       output reg    abc_a_oe,	       // Bus isolation	       output	     abc_d_ce_n,	       // ABC-bus extension header	       // (Note: cannot use an array here because HC and HH are	       // input only.)	       inout	     exth_ha,	       inout	     exth_hb,	       input	     exth_hc,	       inout	     exth_hd,	       inout	     exth_he,	       inout	     exth_hf,	       inout	     exth_hg,	       input	     exth_hh,	       // SDRAM interface	       output [24:0] sdram_addr,	       input [7:0]   sdram_rd,	       output reg    sdram_rrq,	       input	     sdram_rack,	       input	     sdram_rready,	       output [7:0]  sdram_wd,	       output reg    sdram_wrq,	       input	     sdram_wack	       );   // Set if MOSFETs Q1-Q6 are installed rather than the corresponding   // resistors. BOTH CANNOT BE INSTALLED AT THE SAME TIME.   parameter [6:1] mosfet_installed = 6'b111_111;   parameter [0:0] exth_reversed = 1'b0;   // Synchronizer for ABC-bus input signals; also changes   // the sense to positive logic where applicable   wire	       abc_clk_s;   wire [15:0] abc_a_s;   wire [7:0]  abc_di;   wire        abc_rst_s;   wire        abc_cs_s;   wire [4:0]  abc_out_s;   wire [1:0]  abc_inp_s;   wire        abc_xmemfl_s;   wire        abc_xmemw800_s;   wire        abc_xmemw80_s;   wire        abc_xinpstb_s;   wire        abc_xoutpstb_s;   synchronizer #( .width(39) ) abc_synchro     (      .rst_n ( rst_n ),      .clk ( sys_clk ),      .d ( { abc_clk, abc_a, abc_d, ~abc_rst_n, ~abc_cs_n,	     ~abc_out_n, ~abc_inp_n, ~abc_xmemfl_n, ~abc_xmemw800_n,	     ~abc_xmemw80_n, ~abc_xinpstb_n, ~abc_xoutpstb_n } ),      .q ( { abc_clk_s, abc_a_s, abc_di, abc_rst_s, abc_cs_s,	     abc_out_s, abc_inp_s, abc_xmemfl_s, abc_xmemw800_s,	     abc_xmemw80_s, abc_xinpstb_s, abc_xoutpstb_s } )      );   assign abc_host = 1'b0;	// Only device mode supported   assign abc_d_ce_n = 1'b0;	// Do not isolate busses   assign abc_a_oe   = 1'b0;	// Only device mode, again...   reg	     abc_clk_active;   // On ABC800, only one of XINPSTB# or XOUTPSTB# will be active;   // on ABC80 they will either be 00 or ZZ; in the latter case pulled   // low by external resistors.   wire      abc80  = abc_xinpstb_s & abc_xoutpstb_s;   wire      abc800 = ~abc80;   // Memory and I/O read/write strobes for ABC-bus   reg	     abc_xmemrd;   reg       abc_xmemwr;   reg [1:0] abc_inp;   reg [4:0] abc_out;   reg	     abc_rst;   reg	     abc_cs;   reg [3:1] abc_stb;		// Delayed strobes   always @(posedge sdram_clk)     begin	abc_xmemrd <= abc_clk_active & abc_xmemfl_s;	abc_xmemwr <= abc_clk_active &	(abc800 ? abc_xmemw800_s : abc_xmemw80_s);	abc_inp <= abc_inp_s & {2{abc_clk_active}};	abc_out <= abc_out_s & {5{abc_clk_active}};	abc_rst <= abc_rst_s & abc_clk_active;	abc_cs  <= abc_cs_s  & abc_clk_active;	abc_stb <= { abc_stb, |{abc_inp, abc_out, abc_rst,				abc_cs, abc_xmemrd, abc_xmemwr} };     end   reg  [7:0] abc_do;   assign abc_d    = abc_d_oe ? abc_do : 8'hzz;   reg  [8:0] ioselx;   wire       iosel_en = ioselx[8];   wire [5:0] iosel = ioselx[5:0];   // ABC-bus I/O select   always @(negedge rst_n or posedge sdram_clk)     if (~rst_n)       ioselx <= 9'b0;     else if (abc_rst)       ioselx <= 9'b0;     else if (abc_cs)       ioselx <= { 1'b1, abc_di };   // Open drain signals with optional MOSFETs   reg	      abc_wait  = 1'b1;	// Power up asserted; see below   reg	      abc_int   = 1'b0;   reg	      abc_nmi   = 1'b0;   reg	      abc_resin = 1'b0;   reg	      abc_xm    = 1'b0;   function reg opt_mosfet(input signal, input mosfet);      if (mosfet)	opt_mosfet = signal;      else	opt_mosfet = signal ? 1'b0 : 1'bz;   endfunction // opt_mosfet   assign abc_int80_x  = opt_mosfet(abc_int & abc80, mosfet_installed[1]);   assign abc_rdy_x    = opt_mosfet(abc_wait, mosfet_installed[2]);   assign abc_nmi_x    = opt_mosfet(abc_nmi, mosfet_installed[3]);   assign abc_resin_x  = opt_mosfet(abc_resin, mosfet_installed[4]);   assign abc_int800_x = opt_mosfet(abc_int & abc800, mosfet_installed[5]);   assign abc_xm_x     = opt_mosfet(abc_xm, mosfet_installed[6]);   // Detect ABC-bus clock: need a minimum frequency of 84/64 MHz   // to be considered live.   reg [2:0] abc_clk_ctr;   reg [1:0] abc_clk_q;   always @(negedge rst_n or posedge sys_clk)     if (~rst_n)       begin	  abc_clk_q      <= 2'b0;	  abc_clk_ctr    <= 3'b0;	  abc_clk_active <= 1'b0;       end     else       begin	  abc_clk_q <= { abc_clk_q[0], abc_clk_s };	  case ( { abc_clk_q == 2'b10, stb_1mhz } )	    5'b10: begin	       if (abc_clk_ctr == 3'b111)		 abc_clk_active <= 1'b1;	       else		 abc_clk_ctr <= abc_clk_ctr + 1'b1;	    end	    5'b01: begin	       if (abc_clk_ctr == 3'b000)		 abc_clk_active <= 1'b0;	       else		 abc_clk_ctr <= abc_clk_ctr - 1'b1;	    end	    default: begin	       // nothing	    end	  endcase // case ( {(abc_clk_q == 2'10), sys_clk_stb[6]} )       end // else: !if(~rst_n)   // ABC-bus extension header (exth_c and exth_h are input only)   // The naming of pins is kind of nonsensical:   //   //       +3V3 -  1  2 - +3V3   //         HA -  3  4 - HE   //         HB -  5  6 - HG   //         HC -  7  8 - HH   //         HD -  9 10 - HF   //        GND - 11 12 - GND   //   // This layout allows the header to be connected on either side   // of the board. This logic assigns the following names to the pins;   // if the ext_reversed is set to 1 then the left and right sides   // are flipped.   //   //      +3V3  -  1  2 - +3V3   //    exth[0] -  3  4 - exth[1]   //    exth[2] -  5  6 - exth[3]   //    exth[6] -  7  8 - exth[7]   //    exth[4] -  9 10 - exth[5]   //        GND - 11 12 - GND   wire [7:0] exth_d;	// Input data   wire [5:0] exth_q;	// Output data   wire [5:0] exth_oe;	// Output enable   assign exth_d[0]    = exth_reversed ? exth_he : exth_ha;   assign exth_d[1]    = exth_reversed ? exth_ha : exth_he;   assign exth_d[2]    = exth_reversed ? exth_hg : exth_hb;   assign exth_d[3]    = exth_reversed ? exth_hb : exth_hg;   assign exth_d[4]    = exth_reversed ? exth_hf : exth_hd;   assign exth_d[5]    = exth_reversed ? exth_hd : exth_hf;   assign exth_d[6]    = exth_reversed ? exth_hh : exth_hc;   assign exth_d[7]    = exth_reversed ? exth_hc : exth_hh;   wire [2:0] erx      = { 2'b00, exth_reversed };   assign exth_ha      = exth_oe[3'd0 ^ erx] ? exth_q[3'd0 ^ erx] : 1'bz;   assign exth_he      = exth_oe[3'd1 ^ erx] ? exth_q[3'd1 ^ erx] : 1'bz;   assign exth_hb      = exth_oe[3'd2 ^ erx] ? exth_q[3'd2 ^ erx] : 1'bz;   assign exth_hg      = exth_oe[3'd3 ^ erx] ? exth_q[3'd3 ^ erx] : 1'bz;   assign exth_hd      = exth_oe[3'd4 ^ erx] ? exth_q[3'd4 ^ erx] : 1'bz;   assign exth_hf      = exth_oe[3'd5 ^ erx] ? exth_q[3'd5 ^ erx] : 1'bz;   assign exth_q  = 6'b0;   assign exth_oe = 6'b0;   // ABC SDRAM interface   //   // Memory map for ABC-bus memory references.   // 512 byte granularity for memory (registers 0-127),   // one input and one output queue per select code for I/O (128-255).   //   // bit [15:0]  = SDRAM address [24:9] ( bits 24:9 from CPU )   // bit [16]    = write enable ( bit 30 from CPU )   // bit [17]    = read enable  ( bit 31 from CPU )   //   // Accesses from the internal CPU supports 32-bit accesses only!   //   wire [17:0] rdata_abcmemmap;   wire [17:0] abc_memmap_rd;   abcmapram abcmapram (			.aclr      ( ~rst_n ),			.clock     ( sdram_clk ),			.address_a ( abc_a_s[15:9] ),			.data_a    ( 18'bx ),			.wren_a    ( 1'b0 ),			.q_a       ( abc_memmap_rd ),			.address_b ( cpu_addr[8:2] ),			.data_b    ( { cpu_wdata[31:30], cpu_wdata[24:9] } ),			.wren_b    ( map_valid & cpu_wstrb[0] ),			.q_b       ( rdata_abcmemmap )			);   assign cpu_rdata_map =  { rdata_abcmemmap[17:16], 5'b0,			     rdata_abcmemmap[15:0], 9'b0 };   wire        abc_rden    = abc_memmap_rd[17];   wire        abc_wren    = abc_memmap_rd[16];   wire [24:0] abc_memaddr = { abc_memmap_rd[15:0], abc_a_s[8:0] };   reg	      abc_memrd_en;   reg	      abc_memwr_en;   reg	      abc_do_memrd;   reg	      abc_do_memwr;   reg	      abc_racked;   reg	      abc_wacked;   wire       abc_rack;   wire       abc_wack;   wire       abc_rready;   always @(posedge sdram_clk or negedge rst_n)     if (~rst_n)       begin	  abc_memrd_en   <= 1'b0;	  abc_memwr_en   <= 1'b0;	  abc_do_memrd   <= 1'b0;	  abc_do_memwr   <= 1'b0;	  sdram_rrq      <= 1'b0;	  sdram_wrq      <= 1'b0;	  abc_racked     <= 1'b0;	  abc_wacked     <= 1'b0;       end     else       begin	  // Careful with the registering here: need to make sure	  // abcmapram is caught up for I/O; for memory the address	  // will have been stable for some time	  abc_memwr_en  <= abc_xmemwr;	  abc_memrd_en  <= abc_xmemrd;	  abc_do_memrd  <= abc_rden & abc_memrd_en;	  abc_do_memwr  <= abc_wren & abc_memwr_en;	  abc_racked    <= abc_do_memrd & (sdram_rack | abc_racked);	  abc_wacked    <= abc_do_memwr & (sdram_wack | abc_wacked);	  sdram_rrq     <= abc_do_memrd & ~abc_racked;	  sdram_wrq     <= abc_do_memwr & ~abc_wacked;       end // else: !if(~rst_n)   assign sdram_addr = abc_memaddr;   assign sdram_wd   = abc_di;   // I/O data registers; RST# is considered OUT 7 even through   // it is an IN from the ABC point of view.   //   // OUT register, written from ABC: <addr 2:0>   <data 7:0>   // IN register,  written from CPU: <enable 1:0> <status 7:0> <inp 7:0>   // Busy register:   //   //   [7:0] - busy OUT status (write-1-clear)   //   [9:8] - busy IN status  (write-1-clear)   // [15:12] - bus status change (write-1-clear)   //           same bit positions as the bus status register   //   // [23:16] - busy OUT mask   // [25:24] - busy IN mask   // [31:28] - bus status change IRQ enable   //   // Assert WAIT# (deassert RDY) if the masked busy status is nonzero   // and an busy-unmasked I/O comes in.   //   // An IRQ is generated if the masked busy status is nonzero.   //   reg [9:0] busy_status;   reg [9:0] busy_mask;   reg [9:0] busy_io_q;   reg [1:0] inp_en;   reg [3:0] bus_change_status;   reg [3:0] bus_change_mask;   wire [9:0] is_io = { abc_inp[1:0], abc_rst, 1'b0,			  abc_out[4:1], abc_cs, abc_out[0] };   wire [9:0] busy_io = is_io & busy_mask;   wire       is_busy = |(busy_status & busy_mask);   wire [9:0] busy_valid = 10'b11_1011_1111;   wire [9:0] set_busy = busy_io_q & ~busy_io;   always @(posedge sys_clk or negedge rst_n)     if (~rst_n)       busy_io_q <= 10'b0;     else       busy_io_q <= busy_io;   // WAIT# logic   reg	      abc_wait_force = 1'b1; // Power up asserted; ignores rst_n   always @(posedge sys_clk)     abc_wait <= abc_wait_force | (rst_n & |set_busy & is_busy);   //   // I/O data registers   //   reg [2:0]  reg_out_addr;   reg [7:0]  reg_out_data;   reg [7:0]  reg_inp_data[0:1];   // OUT logic   always @(posedge sdram_clk)     begin	if (|busy_io[7:0])	  begin	     reg_out_data <= abc_di;	     case (busy_io[7:0])	       8'b0000_0001: reg_out_addr <= 3'd0;	       8'b0000_0010: reg_out_addr <= 3'd1;	       8'b0000_0100: reg_out_addr <= 3'd2;	       8'b0000_1000: reg_out_addr <= 3'd3;	       8'b0001_0000: reg_out_addr <= 3'd4;	       8'b0010_0000: reg_out_addr <= 3'd5;	       8'b0100_0000: reg_out_addr <= 3'd6;	       8'b1000_0000: reg_out_addr <= 3'd7;	       default:      reg_out_addr <= 3'dx;	     endcase // case (busy_io)	  end // if (|busy_io[7:0])     end // always @ (posedge sdram_clk)   //   // ABC data out (= ABC host read) logic   //   always @(negedge rst_n or posedge sdram_clk)     if (~rst_n)       begin	  abc_d_oe <= 1'b0;	  abc_do    <= 8'bx;       end     else       begin	  abc_d_oe <= 1'b0;	  abc_do    <= 8'bx;	  if (abc_xmemrd & sdram_rready)	    begin	       abc_d_oe <= 1'b1;	       abc_do   <= sdram_rd;	    end	  else if (abc_inp[0] & inp_en[0])	    begin	       abc_d_oe <= 1'b1;	       abc_do   <= reg_inp_data[0];	    end	  else if (abc_inp[1] & inp_en[1])	    begin	       abc_d_oe <= 1'b1;	       abc_do   <= reg_inp_data[1];	    end       end // else: !if(~rst_n)   // Bus status   reg  [3:0] abc_status[0:1];   always @(posedge sys_clk)     begin	abc_status[0] <= { 1'b0, abc800, abc_rst_s, abc_clk_active };	abc_status[1] <= abc_status[0];     end   wire [3:0] bus_change = (abc_status[0] ^ abc_status[1]) & bus_change_mask;   wire [3:0] bus_change_valid = 4'b0111;   //   // Busy/IRQ status and CPU register writes   //   always @(posedge sys_clk or negedge rst_n)     if (~rst_n)       begin	  busy_status       <= 10'b0;	  busy_mask         <= 10'h082; // Enable hold on RST# and CS#	  inp_en            <= 2'b00;	  bus_change_status <= 4'b0;	  bus_change_mask   <= 4'b0;	  // abc_resin, nmi, int and force_wait are deliberately not affected	  // by an internal CPU reset. They are, however, inherently asserted	  // when the FPGA is configured, and initialized to fixed values	  // at configuration time (RESIN# asserted, the others deasserted.)       end     else       begin	  busy_status <= busy_status | set_busy;	  bus_change_status <= bus_change_status | bus_change;	  if (abc_valid)	    begin	       casez (cpu_addr[5:2] )		 5'b??010: begin		   if (cpu_wstrb[0])		     busy_status[7:0] <= set_busy[7:0] | (busy_status[7:0] & ~cpu_wdata[7:0]);		    if (cpu_wstrb[1])		      begin			 busy_status[9:8] <= set_busy[9:8] | (busy_status[9:8] & ~cpu_wdata[9:8]);			 bus_change_status <= bus_change | (bus_change_status & ~cpu_wdata[15:12]);		      end		    if (cpu_wstrb[2])		      busy_mask[7:0] <= cpu_wdata[23:16] & busy_valid[7:0];		    if (cpu_wstrb[3])		      begin			 busy_mask[9:8]  <= cpu_wdata[25:24] & busy_valid[9:8];			 bus_change_mask <= cpu_wdata[31:28] & bus_change_valid;		      end		 end		 5'b??011: begin		    if (cpu_wstrb[0])		      begin			 abc_resin      <= cpu_wdata[3];			 abc_nmi        <= cpu_wdata[2];			 abc_int        <= cpu_wdata[1];			 abc_wait_force <= cpu_wdata[0];		      end		 end		 5'b??101: begin		    if (cpu_wstrb[0])		      reg_inp_data[0] <= cpu_wdata[7:0];		    if (cpu_wstrb[1])		      reg_inp_data[1] <= cpu_wdata[15:8];		    if (cpu_wstrb[2])		      inp_en <= cpu_wdata[17:16];		 end		 default:		   /* do nothing */ ;	       endcase // casez (cpu_addr[5:2])	    end // if (abc_valid & cpu_wstrb[0])       end   // Level triggered IRQ   always @(posedge sys_clk)     irq <= is_busy | (bus_change_status & bus_change_mask);   // Read MUX   always_comb     casez (cpu_addr[5:2])       5'b00000: cpu_rdata = { 28'b0, abc_status[0] };       5'b00001: cpu_rdata = { 23'b0, ~iosel_en, ioselx[7:0] };       5'b00010: cpu_rdata = { bus_change_mask, 2'b0, busy_mask,			       bus_change_status, 2'b0, busy_status };       5'b00011: cpu_rdata = { 28'b0, abc_resin, abc_nmi, abc_int, abc_wait };       5'b00100: cpu_rdata = { 21'b0, reg_out_addr, reg_out_data };       5'b00101: cpu_rdata = { 14'b0, inp_en, reg_inp_data[1], reg_inp_data[0] };       default:  cpu_rdata = 32'bx;     endcase // casez (cpu_addr[5:2])endmodule // abcbus
 |