BlueSCSI_initiator.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "BlueSCSI_config.h"
  8. #include "BlueSCSI_log.h"
  9. #include "BlueSCSI_log_trace.h"
  10. #include "BlueSCSI_initiator.h"
  11. #include <BlueSCSI_platform.h>
  12. #include "SdFat.h"
  13. #include <scsi2sd.h>
  14. extern "C" {
  15. #include <scsi.h>
  16. }
  17. #ifndef PLATFORM_HAS_INITIATOR_MODE
  18. void scsiInitiatorInit()
  19. {
  20. }
  21. void scsiInitiatorMainLoop()
  22. {
  23. }
  24. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  25. uint8_t *bufIn, size_t bufInLen,
  26. const uint8_t *bufOut, size_t bufOutLen)
  27. {
  28. return -1;
  29. }
  30. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  31. {
  32. return false;
  33. }
  34. #else
  35. /*************************************
  36. * High level initiator mode logic *
  37. *************************************/
  38. static struct {
  39. // Bitmap of all drives that have been imaged
  40. uint32_t drives_imaged;
  41. // Is imaging a drive in progress, or are we scanning?
  42. bool imaging;
  43. // Information about currently selected drive
  44. int target_id;
  45. uint32_t sectorsize;
  46. uint32_t sectorcount;
  47. uint32_t sectorcount_all;
  48. uint32_t sectors_done;
  49. uint32_t max_sector_per_transfer;
  50. // Retry information for sector reads.
  51. // If a large read fails, retry is done sector-by-sector.
  52. int retrycount;
  53. uint32_t failposition;
  54. FsFile target_file;
  55. } g_initiator_state;
  56. extern SdFs SD;
  57. // Initialization of initiator mode
  58. void scsiInitiatorInit()
  59. {
  60. scsiHostPhyReset();
  61. g_initiator_state.drives_imaged = 0;
  62. g_initiator_state.imaging = false;
  63. g_initiator_state.target_id = -1;
  64. g_initiator_state.sectorsize = 0;
  65. g_initiator_state.sectorcount = 0;
  66. g_initiator_state.sectors_done = 0;
  67. g_initiator_state.retrycount = 0;
  68. g_initiator_state.failposition = 0;
  69. g_initiator_state.max_sector_per_transfer = 512;
  70. }
  71. // Update progress bar LED during transfers
  72. static void scsiInitiatorUpdateLed()
  73. {
  74. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  75. const int period = 256;
  76. int phase = (millis() % period);
  77. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  78. // Minimum and maximum time to verify that the blink is visible
  79. if (duty < 50) duty = 50;
  80. if (duty > period - 50) duty = period - 50;
  81. if (phase <= duty)
  82. {
  83. if (!platform_network_supported()) {
  84. STANDARD_LED_ON;
  85. }
  86. }
  87. else
  88. {
  89. if (!platform_network_supported()) {
  90. STANDARD_LED_OFF;
  91. }
  92. }
  93. }
  94. void delay_with_poll(uint32_t ms)
  95. {
  96. uint32_t start = millis();
  97. while ((uint32_t)(millis() - start) < ms)
  98. {
  99. platform_poll();
  100. delay(1);
  101. }
  102. }
  103. // High level logic of the initiator mode
  104. void scsiInitiatorMainLoop()
  105. {
  106. SCSI_RELEASE_OUTPUTS();
  107. SCSI_ENABLE_INITIATOR();
  108. if (g_scsiHostPhyReset)
  109. {
  110. log("Executing BUS RESET after aborted command");
  111. scsiHostPhyReset();
  112. }
  113. if (!g_initiator_state.imaging)
  114. {
  115. // Scan for SCSI drives one at a time
  116. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  117. g_initiator_state.sectors_done = 0;
  118. g_initiator_state.retrycount = 0;
  119. g_initiator_state.max_sector_per_transfer = 512;
  120. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  121. {
  122. delay_with_poll(1000);
  123. uint8_t inquiry_data[36];
  124. if (!platform_network_supported()) {
  125. STANDARD_LED_ON;
  126. }
  127. bool startstopok =
  128. scsiTestUnitReady(g_initiator_state.target_id) &&
  129. scsiStartStopUnit(g_initiator_state.target_id, true);
  130. bool readcapok = startstopok &&
  131. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  132. &g_initiator_state.sectorcount,
  133. &g_initiator_state.sectorsize);
  134. bool inquiryok = startstopok &&
  135. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  136. if (!platform_network_supported()) {
  137. STANDARD_LED_OFF;
  138. }
  139. uint64_t total_bytes = 0;
  140. if (readcapok)
  141. {
  142. log("SCSI ID ", g_initiator_state.target_id,
  143. " capacity ", (int)g_initiator_state.sectorcount,
  144. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  145. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  146. total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  147. log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  148. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  149. {
  150. // Note: the FAT32 limit is 4 GiB - 1 byte
  151. log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem");
  152. log("Please reformat the SD card with exFAT format to image this drive.");
  153. g_initiator_state.sectorsize = 0;
  154. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  155. }
  156. }
  157. else if (startstopok)
  158. {
  159. log("SCSI ID ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  160. log("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  161. g_initiator_state.sectorsize = 512;
  162. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  163. g_initiator_state.max_sector_per_transfer = 128;
  164. }
  165. else
  166. {
  167. debuglog("No response from SCSI ID ", g_initiator_state.target_id);
  168. g_initiator_state.sectorsize = 0;
  169. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  170. }
  171. const char *filename_format = "HD00_imaged.hda";
  172. if (inquiryok)
  173. {
  174. if ((inquiry_data[0] & 0x1F) == 5)
  175. {
  176. filename_format = "CD00_imaged.iso";
  177. }
  178. }
  179. if (g_initiator_state.sectorcount > 0)
  180. {
  181. char filename[32] = {0};
  182. int lun = 0;
  183. strncpy(filename, filename_format, sizeof(filename) - 1);
  184. filename[2] += g_initiator_state.target_id;
  185. uint64_t sd_card_free_bytes = (uint64_t)SD.vol()->freeClusterCount() * SD.vol()->bytesPerCluster();
  186. if(sd_card_free_bytes < total_bytes)
  187. {
  188. log("SD Card only has ", (int)(sd_card_free_bytes / (1024 * 1024)), " MiB - not enough free space to image this drive!");
  189. g_initiator_state.imaging = false;
  190. return;
  191. }
  192. while(SD.exists(filename))
  193. {
  194. filename[3] = lun++ + '0';
  195. }
  196. if(lun != 0)
  197. {
  198. log(filename_format, " already exists, using ", filename);
  199. }
  200. g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC);
  201. if (!g_initiator_state.target_file.isOpen())
  202. {
  203. log("Failed to open file for writing: ", filename);
  204. return;
  205. }
  206. if (SD.fatType() == FAT_TYPE_EXFAT)
  207. {
  208. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  209. // file if write is interrupted.
  210. log("Preallocating image file");
  211. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  212. }
  213. log("Starting to copy drive data to ", filename);
  214. g_initiator_state.imaging = true;
  215. }
  216. }
  217. }
  218. else
  219. {
  220. // Copy sectors from SCSI drive to file
  221. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  222. {
  223. scsiStartStopUnit(g_initiator_state.target_id, false);
  224. log("Finished imaging drive with id ", g_initiator_state.target_id);
  225. if (!platform_network_supported()) {
  226. STANDARD_LED_OFF;
  227. }
  228. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  229. {
  230. log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  231. log("Please reformat the SD card with exFAT format to image this drive fully");
  232. }
  233. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  234. g_initiator_state.imaging = false;
  235. g_initiator_state.target_file.close();
  236. return;
  237. }
  238. scsiInitiatorUpdateLed();
  239. // How many sectors to read in one batch?
  240. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  241. if (numtoread > g_initiator_state.max_sector_per_transfer)
  242. numtoread = g_initiator_state.max_sector_per_transfer;
  243. // Retry sector-by-sector after failure
  244. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  245. numtoread = 1;
  246. uint32_t time_start = millis();
  247. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  248. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  249. g_initiator_state.target_file);
  250. if (!status)
  251. {
  252. log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  253. if (g_initiator_state.retrycount < 5)
  254. {
  255. log("Retrying.. ", g_initiator_state.retrycount, "/5");
  256. delay_with_poll(200);
  257. scsiHostPhyReset();
  258. delay_with_poll(200);
  259. g_initiator_state.retrycount++;
  260. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  261. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  262. {
  263. log("Multiple failures, retrying sector-by-sector");
  264. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  265. }
  266. }
  267. else
  268. {
  269. log("Retry limit exceeded, skipping one sector");
  270. g_initiator_state.retrycount = 0;
  271. g_initiator_state.sectors_done++;
  272. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  273. }
  274. }
  275. else
  276. {
  277. g_initiator_state.retrycount = 0;
  278. g_initiator_state.sectors_done += numtoread;
  279. g_initiator_state.target_file.flush();
  280. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  281. log("SCSI read succeeded, sectors done: ",
  282. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  283. " speed ", speed_kbps, " kB/s");
  284. }
  285. }
  286. }
  287. /*************************************
  288. * Low level command implementations *
  289. *************************************/
  290. int scsiInitiatorRunCommand(int target_id,
  291. const uint8_t *command, size_t cmdLen,
  292. uint8_t *bufIn, size_t bufInLen,
  293. const uint8_t *bufOut, size_t bufOutLen,
  294. bool returnDataPhase)
  295. {
  296. if (!scsiHostPhySelect(target_id))
  297. {
  298. debuglog("------ Target ", target_id, " did not respond");
  299. scsiHostPhyRelease();
  300. return -1;
  301. }
  302. SCSI_PHASE phase;
  303. int status = -1;
  304. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  305. {
  306. platform_poll();
  307. if (phase == MESSAGE_IN)
  308. {
  309. uint8_t dummy = 0;
  310. scsiHostRead(&dummy, 1);
  311. }
  312. else if (phase == MESSAGE_OUT)
  313. {
  314. uint8_t identify_msg = 0x80;
  315. scsiHostWrite(&identify_msg, 1);
  316. }
  317. else if (phase == COMMAND)
  318. {
  319. scsiHostWrite(command, cmdLen);
  320. }
  321. else if (phase == DATA_IN)
  322. {
  323. if (returnDataPhase) return 0;
  324. if (bufInLen == 0)
  325. {
  326. log("DATA_IN phase but no data to receive!");
  327. status = -3;
  328. break;
  329. }
  330. if (scsiHostRead(bufIn, bufInLen) == 0)
  331. {
  332. log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  333. status = -2;
  334. break;
  335. }
  336. }
  337. else if (phase == DATA_OUT)
  338. {
  339. if (returnDataPhase) return 0;
  340. if (bufOutLen == 0)
  341. {
  342. log("DATA_OUT phase but no data to send!");
  343. status = -3;
  344. break;
  345. }
  346. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  347. {
  348. log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  349. status = -2;
  350. break;
  351. }
  352. }
  353. else if (phase == STATUS)
  354. {
  355. uint8_t tmp = -1;
  356. scsiHostRead(&tmp, 1);
  357. status = tmp;
  358. debuglog("------ STATUS: ", tmp);
  359. }
  360. }
  361. scsiHostPhyRelease();
  362. return status;
  363. }
  364. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  365. {
  366. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  367. uint8_t response[8] = {0};
  368. int status = scsiInitiatorRunCommand(target_id,
  369. command, sizeof(command),
  370. response, sizeof(response),
  371. NULL, 0);
  372. if (status == 0)
  373. {
  374. *sectorcount = ((uint32_t)response[0] << 24)
  375. | ((uint32_t)response[1] << 16)
  376. | ((uint32_t)response[2] << 8)
  377. | ((uint32_t)response[3] << 0);
  378. *sectorcount += 1; // SCSI reports last sector address
  379. *sectorsize = ((uint32_t)response[4] << 24)
  380. | ((uint32_t)response[5] << 16)
  381. | ((uint32_t)response[6] << 8)
  382. | ((uint32_t)response[7] << 0);
  383. return true;
  384. }
  385. else if (status == 2)
  386. {
  387. uint8_t sense_key;
  388. scsiRequestSense(target_id, &sense_key);
  389. log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  390. return false;
  391. }
  392. else
  393. {
  394. *sectorcount = *sectorsize = 0;
  395. return false;
  396. }
  397. }
  398. // Execute REQUEST SENSE command to get more information about error status
  399. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  400. {
  401. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  402. uint8_t response[18] = {0};
  403. int status = scsiInitiatorRunCommand(target_id,
  404. command, sizeof(command),
  405. response, sizeof(response),
  406. NULL, 0);
  407. log("RequestSense response: ", bytearray(response, 18));
  408. *sense_key = response[2];
  409. return status == 0;
  410. }
  411. // Execute UNIT START STOP command to load/unload media
  412. bool scsiStartStopUnit(int target_id, bool start)
  413. {
  414. uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0};
  415. uint8_t response[4] = {0};
  416. if (start)
  417. {
  418. command[4] |= 1; // Start
  419. command[1] = 0; // Immediate
  420. }
  421. int status = scsiInitiatorRunCommand(target_id,
  422. command, sizeof(command),
  423. response, sizeof(response),
  424. NULL, 0);
  425. if (status == 2)
  426. {
  427. uint8_t sense_key;
  428. scsiRequestSense(target_id, &sense_key);
  429. log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  430. }
  431. return status == 0;
  432. }
  433. // Execute INQUIRY command
  434. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  435. {
  436. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  437. int status = scsiInitiatorRunCommand(target_id,
  438. command, sizeof(command),
  439. inquiry_data, 36,
  440. NULL, 0);
  441. return status == 0;
  442. }
  443. // Execute TEST UNIT READY command and handle unit attention state
  444. bool scsiTestUnitReady(int target_id)
  445. {
  446. for (int retries = 0; retries < 2; retries++)
  447. {
  448. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  449. int status = scsiInitiatorRunCommand(target_id,
  450. command, sizeof(command),
  451. NULL, 0,
  452. NULL, 0);
  453. if (status == 0)
  454. {
  455. return true;
  456. }
  457. else if (status == -1)
  458. {
  459. // No response to select
  460. return false;
  461. }
  462. else if (status == 2)
  463. {
  464. uint8_t sense_key;
  465. scsiRequestSense(target_id, &sense_key);
  466. if (sense_key == 6)
  467. {
  468. uint8_t inquiry[36];
  469. log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  470. scsiInquiry(target_id, inquiry);
  471. }
  472. else if (sense_key == 2)
  473. {
  474. log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  475. scsiStartStopUnit(target_id, true);
  476. }
  477. }
  478. else
  479. {
  480. log("Target ", target_id, " TEST UNIT READY response: ", status);
  481. }
  482. }
  483. return false;
  484. }
  485. // This uses callbacks to run SD and SCSI transfers in parallel
  486. static struct {
  487. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  488. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  489. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  490. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  491. uint32_t bytes_per_sector;
  492. bool all_ok;
  493. } g_initiator_transfer;
  494. static void initiatorReadSDCallback(uint32_t bytes_complete)
  495. {
  496. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  497. {
  498. // How many bytes remaining in the transfer?
  499. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  500. uint32_t len = remain;
  501. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  502. // Select the limit based on total bytes in the transfer.
  503. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  504. // end of SCSI transfer and the SD write completing.
  505. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  506. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  507. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  508. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  509. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  510. if (limit < bytesPerSector) limit = bytesPerSector;
  511. if (len > limit)
  512. {
  513. len = limit;
  514. }
  515. // Split read so that it doesn't wrap around buffer edge
  516. uint32_t bufsize = sizeof(scsiDev.data);
  517. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  518. if (start + len > bufsize)
  519. len = bufsize - start;
  520. // Don't overwrite data that has not yet been written to SD card
  521. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  522. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  523. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  524. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  525. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  526. {
  527. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  528. // transfer to begin.
  529. return;
  530. }
  531. // Keep transfers a multiple of sector size.
  532. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  533. {
  534. len -= len % bytesPerSector;
  535. }
  536. if (len == 0)
  537. return;
  538. // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  539. if (scsiHostRead(&scsiDev.data[start], len) != len)
  540. {
  541. log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  542. g_initiator_transfer.all_ok = false;
  543. }
  544. g_initiator_transfer.bytes_scsi_done += len;
  545. }
  546. }
  547. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  548. {
  549. // Figure out longest continuous block in buffer
  550. uint32_t bufsize = sizeof(scsiDev.data);
  551. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  552. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  553. if (start + len > bufsize) len = bufsize - start;
  554. // Try to do writes in multiple of 512 bytes
  555. // This allows better performance for SD card access.
  556. if (len >= 512) len &= ~511;
  557. // Start writing to SD card and simultaneously reading more from SCSI bus
  558. uint8_t *buf = &scsiDev.data[start];
  559. // debuglog("SD write ", (int)start, " + ", (int)len);
  560. if (use_callback)
  561. {
  562. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  563. }
  564. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  565. if (file.write(buf, len) != len)
  566. {
  567. log("scsiInitiatorReadDataToFile: SD card write failed");
  568. g_initiator_transfer.all_ok = false;
  569. }
  570. platform_set_sd_callback(NULL, NULL);
  571. g_initiator_transfer.bytes_sd += len;
  572. }
  573. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  574. FsFile &file)
  575. {
  576. int status = -1;
  577. if (start_sector < 0xFFFFFF && sectorcount <= 256)
  578. {
  579. // Use READ6 command for compatibility with old SCSI1 drives
  580. uint8_t command[6] = {0x08,
  581. (uint8_t)(start_sector >> 16),
  582. (uint8_t)(start_sector >> 8),
  583. (uint8_t)start_sector,
  584. (uint8_t)sectorcount,
  585. 0x00
  586. };
  587. // Start executing command, return in data phase
  588. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  589. }
  590. else
  591. {
  592. // Use READ10 command for larger number of blocks
  593. uint8_t command[10] = {0x28, 0x00,
  594. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  595. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  596. 0x00,
  597. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  598. 0x00
  599. };
  600. // Start executing command, return in data phase
  601. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  602. }
  603. if (status != 0)
  604. {
  605. uint8_t sense_key;
  606. scsiRequestSense(target_id, &sense_key);
  607. log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  608. scsiHostPhyRelease();
  609. return false;
  610. }
  611. SCSI_PHASE phase;
  612. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  613. g_initiator_transfer.bytes_per_sector = sectorsize;
  614. g_initiator_transfer.bytes_sd = 0;
  615. g_initiator_transfer.bytes_sd_scheduled = 0;
  616. g_initiator_transfer.bytes_scsi_done = 0;
  617. g_initiator_transfer.all_ok = true;
  618. while (true)
  619. {
  620. platform_poll();
  621. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  622. if (phase != DATA_IN && phase != BUS_BUSY)
  623. {
  624. break;
  625. }
  626. // Read next block from SCSI bus if buffer empty
  627. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  628. {
  629. initiatorReadSDCallback(0);
  630. }
  631. else
  632. {
  633. // Write data to SD card and simultaneously read more from SCSI
  634. scsiInitiatorUpdateLed();
  635. scsiInitiatorWriteDataToSd(file, true);
  636. }
  637. }
  638. // Write any remaining buffered data
  639. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  640. {
  641. platform_poll();
  642. scsiInitiatorWriteDataToSd(file, false);
  643. }
  644. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  645. {
  646. log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  647. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  648. g_initiator_transfer.all_ok = false;
  649. }
  650. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  651. {
  652. platform_poll();
  653. if (phase == MESSAGE_IN)
  654. {
  655. uint8_t dummy = 0;
  656. scsiHostRead(&dummy, 1);
  657. }
  658. else if (phase == MESSAGE_OUT)
  659. {
  660. uint8_t identify_msg = 0x80;
  661. scsiHostWrite(&identify_msg, 1);
  662. }
  663. else if (phase == STATUS)
  664. {
  665. uint8_t tmp = 0;
  666. scsiHostRead(&tmp, 1);
  667. status = tmp;
  668. debuglog("------ STATUS: ", tmp);
  669. }
  670. }
  671. scsiHostPhyRelease();
  672. return status == 0 && g_initiator_transfer.all_ok;
  673. }
  674. #endif