ZuluSCSI_initiator.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "ZuluSCSI_config.h"
  8. #include "ZuluSCSI_log.h"
  9. #include "ZuluSCSI_log_trace.h"
  10. #include "ZuluSCSI_initiator.h"
  11. #include <ZuluSCSI_platform.h>
  12. #include "SdFat.h"
  13. #include <scsi2sd.h>
  14. extern "C" {
  15. #include <scsi.h>
  16. }
  17. #ifndef PLATFORM_HAS_INITIATOR_MODE
  18. void scsiInitiatorInit()
  19. {
  20. }
  21. void scsiInitiatorMainLoop()
  22. {
  23. }
  24. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  25. uint8_t *bufIn, size_t bufInLen,
  26. const uint8_t *bufOut, size_t bufOutLen)
  27. {
  28. return -1;
  29. }
  30. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  31. {
  32. return false;
  33. }
  34. #else
  35. /*************************************
  36. * High level initiator mode logic *
  37. *************************************/
  38. static struct {
  39. // Bitmap of all drives that have been imaged
  40. uint32_t drives_imaged;
  41. // Is imaging a drive in progress, or are we scanning?
  42. bool imaging;
  43. // Information about currently selected drive
  44. int target_id;
  45. uint32_t sectorsize;
  46. uint32_t sectorcount;
  47. uint32_t sectors_done;
  48. int retrycount;
  49. FsFile target_file;
  50. } g_initiator_state;
  51. extern SdFs SD;
  52. // Initialization of initiator mode
  53. void scsiInitiatorInit()
  54. {
  55. scsiHostPhyReset();
  56. g_initiator_state.drives_imaged = 0;
  57. g_initiator_state.imaging = false;
  58. g_initiator_state.target_id = -1;
  59. g_initiator_state.sectorsize = 0;
  60. g_initiator_state.sectorcount = 0;
  61. g_initiator_state.sectors_done = 0;
  62. g_initiator_state.retrycount = 0;
  63. }
  64. // High level logic of the initiator mode
  65. void scsiInitiatorMainLoop()
  66. {
  67. if (!g_initiator_state.imaging)
  68. {
  69. // Scan for SCSI drives one at a time
  70. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  71. g_initiator_state.sectors_done = 0;
  72. g_initiator_state.retrycount = 0;
  73. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  74. {
  75. delay(1000);
  76. LED_ON();
  77. bool readcapok =
  78. scsiTestUnitReady(g_initiator_state.target_id) &&
  79. scsiStartStopUnit(g_initiator_state.target_id, true) &&
  80. scsiInitiatorReadCapacity(g_initiator_state.target_id, &g_initiator_state.sectorcount, &g_initiator_state.sectorsize);
  81. LED_OFF();
  82. if (readcapok)
  83. {
  84. azlog("SCSI id ", g_initiator_state.target_id,
  85. " capacity ", (int)g_initiator_state.sectorcount,
  86. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  87. char filename[] = "HD00_imaged.hda";
  88. filename[2] += g_initiator_state.target_id;
  89. SD.remove(filename);
  90. g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC);
  91. if (!g_initiator_state.target_file.isOpen())
  92. {
  93. azlog("Failed to open file for writing: ", filename);
  94. return;
  95. }
  96. azlog("Starting to copy drive data to ", filename);
  97. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  98. g_initiator_state.imaging = true;
  99. }
  100. }
  101. }
  102. else
  103. {
  104. // Copy sectors from SCSI drive to file
  105. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  106. {
  107. scsiStartStopUnit(g_initiator_state.target_id, false);
  108. azlog("Finished imaging drive with id ", g_initiator_state.target_id);
  109. LED_OFF();
  110. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  111. g_initiator_state.imaging = false;
  112. g_initiator_state.target_file.close();
  113. return;
  114. }
  115. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  116. uint32_t time_start = millis();
  117. int phase = (time_start % 5000);
  118. int duty = g_initiator_state.sectors_done * 5000 / g_initiator_state.sectorcount;
  119. if (duty < 100) duty = 100;
  120. if (phase <= duty)
  121. {
  122. LED_ON();
  123. }
  124. else
  125. {
  126. LED_OFF();
  127. }
  128. // How many sectors to read in one batch?
  129. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  130. if (numtoread > 512) numtoread = 512;
  131. // Retry sector-by-sector
  132. if (g_initiator_state.retrycount > 1)
  133. numtoread = 1;
  134. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  135. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  136. g_initiator_state.target_file);
  137. if (!status)
  138. {
  139. azlog("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  140. if (g_initiator_state.retrycount < 5)
  141. {
  142. azlog("Retrying.. ", g_initiator_state.retrycount, "/5");
  143. delay(200);
  144. scsiHostPhyReset();
  145. delay(200);
  146. g_initiator_state.retrycount++;
  147. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  148. }
  149. else
  150. {
  151. azlog("Retry limit exceeded, skipping one sector");
  152. g_initiator_state.retrycount = 0;
  153. g_initiator_state.sectors_done++;
  154. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  155. }
  156. }
  157. else
  158. {
  159. g_initiator_state.retrycount = 0;
  160. g_initiator_state.sectors_done += numtoread;
  161. g_initiator_state.target_file.flush();
  162. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  163. azlog("SCSI read succeeded, sectors done: ",
  164. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  165. " speed ", speed_kbps, " kB/s");
  166. }
  167. }
  168. }
  169. /*************************************
  170. * Low level command implementations *
  171. *************************************/
  172. int scsiInitiatorRunCommand(int target_id,
  173. const uint8_t *command, size_t cmdLen,
  174. uint8_t *bufIn, size_t bufInLen,
  175. const uint8_t *bufOut, size_t bufOutLen,
  176. bool returnDataPhase)
  177. {
  178. if (!scsiHostPhySelect(target_id))
  179. {
  180. azdbg("------ Target ", target_id, " did not respond");
  181. scsiHostPhyRelease();
  182. return -1;
  183. }
  184. SCSI_PHASE phase;
  185. int status = -1;
  186. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  187. {
  188. if (phase == MESSAGE_IN)
  189. {
  190. uint8_t dummy = 0;
  191. scsiHostRead(&dummy, 1);
  192. }
  193. else if (phase == MESSAGE_OUT)
  194. {
  195. uint8_t identify_msg = 0x80;
  196. scsiHostWrite(&identify_msg, 1);
  197. }
  198. else if (phase == COMMAND)
  199. {
  200. scsiHostWrite(command, cmdLen);
  201. }
  202. else if (phase == DATA_IN)
  203. {
  204. if (returnDataPhase) return 0;
  205. if (bufInLen == 0)
  206. {
  207. azlog("DATA_IN phase but no data to receive!");
  208. status = -3;
  209. break;
  210. }
  211. if (!scsiHostRead(bufIn, bufInLen))
  212. {
  213. azlog("scsiHostRead failed, was writing ", bytearray(bufOut, bufOutLen));
  214. status = -2;
  215. break;
  216. }
  217. }
  218. else if (phase == DATA_OUT)
  219. {
  220. if (returnDataPhase) return 0;
  221. if (bufOutLen == 0)
  222. {
  223. azlog("DATA_OUT phase but no data to send!");
  224. status = -3;
  225. break;
  226. }
  227. if (!scsiHostWrite(bufOut, bufOutLen))
  228. {
  229. azlog("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  230. status = -2;
  231. break;
  232. }
  233. }
  234. else if (phase == STATUS)
  235. {
  236. uint8_t tmp = 0;
  237. scsiHostRead(&tmp, 1);
  238. status = tmp;
  239. azdbg("------ STATUS: ", tmp);
  240. }
  241. }
  242. scsiHostPhyRelease();
  243. return status;
  244. }
  245. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  246. {
  247. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  248. uint8_t response[8] = {0};
  249. int status = scsiInitiatorRunCommand(target_id,
  250. command, sizeof(command),
  251. response, sizeof(response),
  252. NULL, 0);
  253. if (status == 0)
  254. {
  255. *sectorcount = ((uint32_t)response[0] << 24)
  256. | ((uint32_t)response[1] << 16)
  257. | ((uint32_t)response[2] << 8)
  258. | ((uint32_t)response[3] << 0);
  259. *sectorcount += 1; // SCSI reports last sector address
  260. *sectorsize = ((uint32_t)response[4] << 24)
  261. | ((uint32_t)response[5] << 16)
  262. | ((uint32_t)response[6] << 8)
  263. | ((uint32_t)response[7] << 0);
  264. return true;
  265. }
  266. else if (status == 2)
  267. {
  268. uint8_t sense_key;
  269. scsiRequestSense(target_id, &sense_key);
  270. azlog("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  271. return false;
  272. }
  273. else
  274. {
  275. *sectorcount = *sectorsize = 0;
  276. return false;
  277. }
  278. }
  279. // Execute REQUEST SENSE command to get more information about error status
  280. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  281. {
  282. uint8_t command[6] = {0x03, 0, 0, 0, 4, 0};
  283. uint8_t response[18] = {0};
  284. int status = scsiInitiatorRunCommand(target_id,
  285. command, sizeof(command),
  286. response, sizeof(response),
  287. NULL, 0);
  288. azdbg("RequestSense response: ", bytearray(response, 18));
  289. *sense_key = response[2];
  290. return status == 0;
  291. }
  292. // Execute UNIT START STOP command to load/unload media
  293. bool scsiStartStopUnit(int target_id, bool start)
  294. {
  295. uint8_t command[6] = {0x1B, 0, 0, 0, 0, 0};
  296. uint8_t response[4] = {0};
  297. if (start) command[4] |= 1;
  298. int status = scsiInitiatorRunCommand(target_id,
  299. command, sizeof(command),
  300. response, sizeof(response),
  301. NULL, 0);
  302. if (status == 2)
  303. {
  304. uint8_t sense_key;
  305. scsiRequestSense(target_id, &sense_key);
  306. azlog("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  307. }
  308. return status == 0;
  309. }
  310. // Execute INQUIRY command
  311. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  312. {
  313. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  314. int status = scsiInitiatorRunCommand(target_id,
  315. command, sizeof(command),
  316. inquiry_data, 36,
  317. NULL, 0);
  318. return status == 0;
  319. }
  320. // Execute TEST UNIT READY command and handle unit attention state
  321. bool scsiTestUnitReady(int target_id)
  322. {
  323. for (int retries = 0; retries < 2; retries++)
  324. {
  325. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  326. int status = scsiInitiatorRunCommand(target_id,
  327. command, sizeof(command),
  328. NULL, 0,
  329. NULL, 0);
  330. if (status == 0)
  331. {
  332. return true;
  333. }
  334. else if (status == 2)
  335. {
  336. uint8_t sense_key;
  337. scsiRequestSense(target_id, &sense_key);
  338. if (sense_key == 6)
  339. {
  340. uint8_t inquiry[36];
  341. azlog("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  342. scsiInquiry(target_id, inquiry);
  343. }
  344. else if (sense_key == 2)
  345. {
  346. azlog("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  347. scsiStartStopUnit(target_id, true);
  348. }
  349. }
  350. else
  351. {
  352. azlog("Target ", target_id, " TEST UNIT READY response: ", status);
  353. }
  354. }
  355. return false;
  356. }
  357. // This uses callbacks to run SD and SCSI transfers in parallel
  358. static struct {
  359. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  360. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  361. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  362. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  363. uint32_t bytes_per_sector;
  364. bool all_ok;
  365. } g_initiator_transfer;
  366. static void initiatorReadSDCallback(uint32_t bytes_complete)
  367. {
  368. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  369. {
  370. // How many bytes remaining in the transfer?
  371. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  372. uint32_t len = remain;
  373. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  374. // Select the limit based on total bytes in the transfer.
  375. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  376. // end of SCSI transfer and the SD write completing.
  377. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  378. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  379. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  380. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  381. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  382. if (limit < bytesPerSector) limit = bytesPerSector;
  383. if (len > limit)
  384. {
  385. len = limit;
  386. }
  387. // Split read so that it doesn't wrap around buffer edge
  388. uint32_t bufsize = sizeof(scsiDev.data);
  389. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  390. if (start + len > bufsize)
  391. len = bufsize - start;
  392. // Don't overwrite data that has not yet been written to SD card
  393. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  394. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  395. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  396. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  397. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  398. {
  399. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  400. // transfer to begin.
  401. return;
  402. }
  403. // Keep transfers a multiple of sector size.
  404. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  405. {
  406. len -= len % bytesPerSector;
  407. }
  408. if (len == 0)
  409. return;
  410. // azdbg("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  411. if (!scsiHostRead(&scsiDev.data[start], len))
  412. {
  413. azlog("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  414. g_initiator_transfer.all_ok = false;
  415. }
  416. g_initiator_transfer.bytes_scsi_done += len;
  417. }
  418. }
  419. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  420. {
  421. // Figure out longest continuous block in buffer
  422. uint32_t bufsize = sizeof(scsiDev.data);
  423. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  424. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  425. if (start + len > bufsize) len = bufsize - start;
  426. // Try to do writes in multiple of 512 bytes
  427. // This allows better performance for SD card access.
  428. if (len >= 512) len &= ~511;
  429. // Start writing to SD card and simultaneously reading more from SCSI bus
  430. uint8_t *buf = &scsiDev.data[start];
  431. // azdbg("SD write ", (int)start, " + ", (int)len);
  432. if (use_callback)
  433. {
  434. azplatform_set_sd_callback(&initiatorReadSDCallback, buf);
  435. }
  436. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  437. if (file.write(buf, len) != len)
  438. {
  439. azlog("scsiInitiatorReadDataToFile: SD card write failed");
  440. g_initiator_transfer.all_ok = false;
  441. }
  442. azplatform_set_sd_callback(NULL, NULL);
  443. g_initiator_transfer.bytes_sd += len;
  444. }
  445. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  446. FsFile &file)
  447. {
  448. uint8_t command[10] = {0x28, 0x00,
  449. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  450. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  451. 0x00,
  452. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  453. 0x00
  454. };
  455. // Start executing command, return in data phase
  456. int status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  457. if (status != 0)
  458. {
  459. uint8_t sense_key;
  460. scsiRequestSense(target_id, &sense_key);
  461. azlog("scsiInitiatorReadDataToFile: READ10 failed: ", status, " sense key ", sense_key);
  462. scsiHostPhyRelease();
  463. return false;
  464. }
  465. SCSI_PHASE phase;
  466. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  467. g_initiator_transfer.bytes_per_sector = sectorsize;
  468. g_initiator_transfer.bytes_sd = 0;
  469. g_initiator_transfer.bytes_sd_scheduled = 0;
  470. g_initiator_transfer.bytes_scsi_done = 0;
  471. g_initiator_transfer.all_ok = true;
  472. while (true)
  473. {
  474. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  475. if (phase != DATA_IN && phase != BUS_BUSY)
  476. {
  477. break;
  478. }
  479. // Read next block from SCSI bus if buffer empty
  480. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  481. {
  482. initiatorReadSDCallback(0);
  483. }
  484. else
  485. {
  486. // Write data to SD card and simultaneously read more from SCSI
  487. scsiInitiatorWriteDataToSd(file, true);
  488. }
  489. }
  490. // Write any remaining buffered data
  491. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  492. {
  493. scsiInitiatorWriteDataToSd(file, false);
  494. }
  495. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  496. {
  497. azlog("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  498. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  499. g_initiator_transfer.all_ok = false;
  500. }
  501. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  502. {
  503. if (phase == MESSAGE_IN)
  504. {
  505. uint8_t dummy = 0;
  506. scsiHostRead(&dummy, 1);
  507. }
  508. else if (phase == MESSAGE_OUT)
  509. {
  510. uint8_t identify_msg = 0x80;
  511. scsiHostWrite(&identify_msg, 1);
  512. }
  513. else if (phase == STATUS)
  514. {
  515. uint8_t tmp = 0;
  516. scsiHostRead(&tmp, 1);
  517. status = tmp;
  518. azdbg("------ STATUS: ", tmp);
  519. }
  520. }
  521. scsiHostPhyRelease();
  522. return status == 0 && g_initiator_transfer.all_ok;
  523. }
  524. #endif