| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 |
- // Implements the low level interface to SCSI bus
- // Partially derived from scsiPhy.c from SCSI2SD-V6
- //
- // Copyright (c) 2022 Rabbit Hole Computing™
- // Copyright (c) 2014 Michael McMaster
- #include "scsiPhy.h"
- #include "BlueSCSI_platform.h"
- #include "BlueSCSI_log.h"
- #include "BlueSCSI_log_trace.h"
- #include "BlueSCSI_config.h"
- #include "scsi_accel_rp2040.h"
- #include "hardware/structs/iobank0.h"
- #include <scsi2sd.h>
- extern "C" {
- #include <scsi.h>
- #include <scsi2sd_time.h>
- }
- /***********************/
- /* SCSI status signals */
- /***********************/
- extern "C" bool scsiStatusATN()
- {
- return SCSI_IN(ATN);
- }
- extern "C" bool scsiStatusBSY()
- {
- return SCSI_IN(BSY);
- }
- /************************/
- /* SCSI selection logic */
- /************************/
- volatile uint8_t g_scsi_sts_selection;
- volatile uint8_t g_scsi_ctrl_bsy;
- void scsi_bsy_deassert_interrupt()
- {
- if (SCSI_IN(SEL) && !SCSI_IN(BSY))
- {
- // Check if any of the targets we simulate is selected
- uint8_t sel_bits = SCSI_IN_DATA();
- int sel_id = -1;
- for (int i = 0; i < S2S_MAX_TARGETS; i++)
- {
- if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
- {
- if (sel_bits & (1 << scsiDev.targets[i].targetId))
- {
- sel_id = scsiDev.targets[i].targetId;
- break;
- }
- }
- }
- if (sel_id >= 0)
- {
- // Set ATN flag here unconditionally, real value is only known after
- // OUT_BSY is enabled in scsiStatusSEL() below.
- g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
- }
- // selFlag is required for Philips P2000C which releases it after 600ns
- // without waiting for BSY.
- // Also required for some early Mac Plus roms
- scsiDev.selFlag = *SCSI_STS_SELECTED;
- }
- }
- extern "C" bool scsiStatusSEL()
- {
- if (g_scsi_ctrl_bsy)
- {
- // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
- // Instead update the state here.
- // Releasing happens with bus release.
- g_scsi_ctrl_bsy = 0;
- SCSI_OUT(CD, 0);
- SCSI_OUT(MSG, 0);
- SCSI_ENABLE_CONTROL_OUT();
- SCSI_OUT(BSY, 1);
- // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
- // the IO buffer U105, so check the signal status here.
- delay_100ns();
- if (!scsiStatusATN())
- {
- // This is a SCSI1 host that does send IDENTIFY message
- scsiDev.atnFlag = 0;
- scsiDev.target->unitAttention = 0;
- scsiDev.compatMode = COMPAT_SCSI1;
- }
- }
- return SCSI_IN(SEL);
- }
- /************************/
- /* SCSI bus reset logic */
- /************************/
- static void scsi_rst_assert_interrupt()
- {
- // Glitch filtering
- bool rst1 = SCSI_IN(RST);
- delay_ns(500);
- bool rst2 = SCSI_IN(RST);
- if (rst1 && rst2)
- {
- debuglog("BUS RESET");
- scsiDev.resetFlag = 1;
- }
- }
- static void scsiPhyIRQ(uint gpio, uint32_t events)
- {
- if (gpio == scsi_pins.IN_BSY || gpio == scsi_pins.IN_SEL)
- {
- // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
- // The BSY input pin may be shared with other signals.
- if (sio_hw->gpio_out & (1 << scsi_pins.OUT_BSY))
- {
- scsi_bsy_deassert_interrupt();
- }
- }
- else if (gpio == scsi_pins.IN_RST && ((~sio_hw->gpio_oe) & (1 << scsi_pins.OUT_SEL)))
- {
- // If oSEL is in input mode, this is a real reset. Otherwise ignore.
- scsi_rst_assert_interrupt();
- }
- }
- // This function is called to initialize the phy code.
- // It is called after power-on and after SCSI bus reset.
- extern "C" void scsiPhyReset(void)
- {
- SCSI_RELEASE_OUTPUTS();
- g_scsi_sts_selection = 0;
- g_scsi_ctrl_bsy = 0;
- scsi_accel_rp2040_init();
- // Enable BSY, RST and SEL interrupts
- // Note: RP2040 library currently supports only one callback,
- // so it has to be same for all pins.
- gpio_set_irq_enabled_with_callback(scsi_pins.IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
- gpio_set_irq_enabled(scsi_pins.IN_RST, GPIO_IRQ_EDGE_FALL, true);
- // Check BSY line status when SEL goes active.
- // This is needed to handle SCSI-1 hosts that use the single initiator mode.
- // The host will just assert the SEL directly, without asserting BSY first.
- gpio_set_irq_enabled(scsi_pins.IN_SEL, GPIO_IRQ_EDGE_FALL, true);
- }
- /************************/
- /* SCSI bus phase logic */
- /************************/
- static SCSI_PHASE g_scsi_phase;
- extern "C" void scsiEnterPhase(int phase)
- {
- int delay = scsiEnterPhaseImmediate(phase);
- if (delay > 0)
- {
- s2s_delay_ns(delay);
- }
- }
- // Change state and return nanosecond delay to wait
- extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
- {
- if (phase != g_scsi_phase)
- {
- // ANSI INCITS 362-2002 SPI-3 10.7.1:
- // Phase changes are not allowed while REQ or ACK is asserted.
- while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
- if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
- {
- // Akai S1000/S3000 seems to need extra delay before changing to data phase
- // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting
- // for SD card, to avoid any extra latency.
- s2s_delay_ns(400000);
- }
- int oldphase = g_scsi_phase;
- g_scsi_phase = (SCSI_PHASE)phase;
- scsiLogPhaseChange(phase);
- // Select between synchronous vs. asynchronous SCSI writes
- bool syncstatus = false;
- if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT))
- {
- syncstatus = scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
- }
- else
- {
- syncstatus = scsi_accel_rp2040_setSyncMode(0, 0);
- }
- if (!syncstatus)
- {
- // SCSI DMA was not idle, we are in some kind of error state, force bus reset
- scsiDev.resetFlag = 1;
- return 0;
- }
- if (phase < 0)
- {
- // Other communication on bus or reset state
- SCSI_RELEASE_OUTPUTS();
- return 0;
- }
- else
- {
- // The phase control signals should be changed close to simultaneously.
- // The SCSI spec allows 400 ns for this, but some hosts do not seem to be that
- // tolerant. The Cortex-M0 is also quite slow in bit twiddling.
- //
- // To avoid unnecessary delays, precalculate an XOR mask and then apply it
- // simultaneously to all three signals.
- uint32_t gpio_new = 0;
- if (!(phase & __scsiphase_msg)) { gpio_new |= (1 << scsi_pins.OUT_MSG); }
- if (!(phase & __scsiphase_cd)) { gpio_new |= (1 << scsi_pins.OUT_CD); }
- if (!(phase & __scsiphase_io)) { gpio_new |= (1 << scsi_pins.OUT_IO); }
- uint32_t mask = (1 << scsi_pins.OUT_MSG) | (1 << scsi_pins.OUT_CD) | (1 << scsi_pins.OUT_IO);
- uint32_t gpio_xor = (sio_hw->gpio_out ^ gpio_new) & mask;
- sio_hw->gpio_togl = gpio_xor;
- SCSI_ENABLE_CONTROL_OUT();
- int delayNs = 400; // Bus settle delay
- if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
- {
- delayNs += 400; // Data release delay
- }
- if (scsiDev.compatMode < COMPAT_SCSI2)
- {
- // EMU EMAX needs 100uS ! 10uS is not enough.
- delayNs += 100000;
- }
- return delayNs;
- }
- }
- else
- {
- return 0;
- }
- }
- // Release all signals
- void scsiEnterBusFree(void)
- {
- g_scsi_phase = BUS_FREE;
- g_scsi_sts_selection = 0;
- g_scsi_ctrl_bsy = 0;
- scsiDev.cdbLen = 0;
- SCSI_RELEASE_OUTPUTS();
- }
- /********************/
- /* Transmit to host */
- /********************/
- #define SCSI_WAIT_ACTIVE(pin) \
- if (!SCSI_IN(pin)) { \
- if (!SCSI_IN(pin)) { \
- while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
- } \
- }
- // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
- #define CHECK_EDGE(pin) \
- ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
- #define SCSI_WAIT_ACTIVE_EDGE(pin) \
- if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
- while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
- }
- #define SCSI_WAIT_INACTIVE(pin) \
- if (SCSI_IN(pin)) { \
- if (SCSI_IN(pin)) { \
- while(SCSI_IN(pin) && !scsiDev.resetFlag); \
- } \
- }
- // Write one byte to SCSI host using the handshake mechanism
- // This is suitable for both asynchronous and synchronous communication.
- static inline void scsiWriteOneByte(uint8_t value)
- {
- SCSI_OUT_DATA(value);
- delay_100ns(); // DB setup time before REQ
- gpio_acknowledge_irq(scsi_pins.IN_ACK, GPIO_IRQ_EDGE_FALL);
- SCSI_OUT(REQ, 1);
- SCSI_WAIT_ACTIVE_EDGE(ACK);
- SCSI_RELEASE_DATA_REQ();
- SCSI_WAIT_INACTIVE(ACK);
- }
- extern "C" void scsiWriteByte(uint8_t value)
- {
- scsiLogDataIn(&value, 1);
- scsiWriteOneByte(value);
- }
- extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
- {
- scsiStartWrite(data, count);
- scsiFinishWrite();
- }
- extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
- {
- scsiLogDataIn(data, count);
- scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
- }
- extern "C" bool scsiIsWriteFinished(const uint8_t *data)
- {
- return scsi_accel_rp2040_isWriteFinished(data);
- }
- extern "C" void scsiFinishWrite()
- {
- scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
- }
- /*********************/
- /* Receive from host */
- /*********************/
- // Read one byte from SCSI host using the handshake mechanism.
- static inline uint8_t scsiReadOneByte(int* parityError)
- {
- SCSI_OUT(REQ, 1);
- SCSI_WAIT_ACTIVE(ACK);
- delay_100ns();
- uint16_t r = SCSI_IN_DATA();
- SCSI_OUT(REQ, 0);
- SCSI_WAIT_INACTIVE(ACK);
- if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
- {
- debuglog("Parity error in scsiReadOneByte(): ", (uint32_t)r);
- *parityError = 1;
- }
- return (uint8_t)r;
- }
- extern "C" uint8_t scsiReadByte(void)
- {
- uint8_t r = scsiReadOneByte(NULL);
- scsiLogDataOut(&r, 1);
- return r;
- }
- extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
- {
- *parityError = 0;
- scsiStartRead(data, count, parityError);
- scsiFinishRead(data, count, parityError);
- }
- extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError)
- {
- scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag);
- }
- extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError)
- {
- scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag);
- scsiLogDataOut(data, count);
- }
- extern "C" bool scsiIsReadFinished(const uint8_t *data)
- {
- return scsi_accel_rp2040_isReadFinished(data);
- }
|