scsi_accel_rp2040.cpp 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. // Copyright (c) 2022 Rabbit Hole Computing™
  2. /* Data flow in SCSI acceleration:
  3. *
  4. * 1. Application provides a buffer of bytes to send.
  5. * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
  6. * 3. DMA controller copies the words to PIO peripheral FIFO.
  7. * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
  8. */
  9. #include "BlueSCSI_platform.h"
  10. #include "BlueSCSI_log.h"
  11. #include "scsi_accel_rp2040.h"
  12. #include "scsi_accel.pio.h"
  13. #include <hardware/pio.h>
  14. #include <hardware/dma.h>
  15. #include <hardware/irq.h>
  16. #include <hardware/structs/iobank0.h>
  17. #include <hardware/sync.h>
  18. #include <audio.h>
  19. #include <pico/multicore.h>
  20. // SCSI bus write acceleration uses up to 3 PIO state machines:
  21. // SM0: Convert data bytes to lookup addresses to add parity
  22. // SM1: Write data to SCSI bus
  23. // SM2: For synchronous mode only, count ACK pulses
  24. #define SCSI_DMA_PIO pio0
  25. #define SCSI_PARITY_SM 1
  26. #define SCSI_DATA_SM 2
  27. #define SCSI_SYNC_SM 3
  28. // SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):
  29. // A: Bytes from RAM to scsi_parity PIO
  30. // B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
  31. // C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
  32. // D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO
  33. //
  34. // SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):
  35. // A: Bytes from scsi_read_parity PIO to memory buffer
  36. // B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
  37. // C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register
  38. // D: From pacer to data state machine to trigger transfers
  39. #define SCSI_DMA_CH_A 6
  40. #define SCSI_DMA_CH_B 7
  41. #define SCSI_DMA_CH_C 8
  42. #define SCSI_DMA_CH_D 9
  43. static struct {
  44. uint8_t *app_buf; // Buffer provided by application
  45. uint32_t app_bytes; // Bytes available in application buffer
  46. uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far
  47. uint8_t *next_app_buf; // Next buffer from application after current one finishes
  48. uint32_t next_app_bytes; // Bytes in next buffer
  49. // Synchronous mode?
  50. int syncOffset;
  51. int syncPeriod;
  52. int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
  53. int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
  54. // PIO configurations
  55. uint32_t pio_offset_parity;
  56. uint32_t pio_offset_async_write;
  57. uint32_t pio_offset_sync_write_pacer;
  58. uint32_t pio_offset_sync_write;
  59. uint32_t pio_offset_read;
  60. uint32_t pio_offset_read_parity;
  61. uint32_t pio_offset_sync_read_pacer;
  62. pio_sm_config pio_cfg_parity;
  63. pio_sm_config pio_cfg_async_write;
  64. pio_sm_config pio_cfg_sync_write_pacer;
  65. pio_sm_config pio_cfg_sync_write;
  66. pio_sm_config pio_cfg_read;
  67. pio_sm_config pio_cfg_read_parity;
  68. pio_sm_config pio_cfg_sync_read_pacer;
  69. // DMA configurations for write
  70. dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO
  71. dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA
  72. dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO
  73. dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines
  74. // DMA configurations for read
  75. dma_channel_config dmacfg_read_chA; // Data to destination memory buffer
  76. dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO
  77. dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR
  78. dma_channel_config dmacfg_read_chD; // From pacer to data state machine
  79. } g_scsi_dma;
  80. enum scsidma_state_t { SCSIDMA_IDLE = 0,
  81. SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
  82. SCSIDMA_READ, SCSIDMA_READ_DONE };
  83. static const char* scsidma_states[5] = {"IDLE", "WRITE", "WRITE_DONE", "READ", "READ_DONE"};
  84. static volatile scsidma_state_t g_scsi_dma_state;
  85. static bool g_channels_claimed = false;
  86. static void scsidma_config_gpio();
  87. void scsi_accel_log_state()
  88. {
  89. log("SCSI DMA state: ", scsidma_states[g_scsi_dma_state]);
  90. log("Current buffer: ", g_scsi_dma.dma_bytes, "/", g_scsi_dma.app_bytes, ", next ", g_scsi_dma.next_app_bytes, " bytes");
  91. log("SyncOffset: ", g_scsi_dma.syncOffset, " SyncPeriod ", g_scsi_dma.syncPeriod);
  92. log("PIO Parity SM:",
  93. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM),
  94. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM),
  95. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_PARITY_SM),
  96. ", instr ", SCSI_DMA_PIO->sm[SCSI_PARITY_SM].instr);
  97. log("PIO Data SM:",
  98. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
  99. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
  100. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM),
  101. ", instr ", SCSI_DMA_PIO->sm[SCSI_DATA_SM].instr);
  102. log("PIO Sync SM:",
  103. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
  104. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
  105. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
  106. ", instr ", SCSI_DMA_PIO->sm[SCSI_SYNC_SM].instr);
  107. log("DMA CH A:",
  108. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_A].ctrl_trig,
  109. " count: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count);
  110. log("DMA CH B:",
  111. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_B].ctrl_trig,
  112. " count: ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count);
  113. log("DMA CH C:",
  114. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_C].ctrl_trig,
  115. " count: ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count);
  116. log("DMA CH D:",
  117. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_D].ctrl_trig,
  118. " count: ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
  119. log("GPIO states: ", sio_hw->gpio_in);
  120. }
  121. /****************************************/
  122. /* Accelerated writes to SCSI bus */
  123. /****************************************/
  124. // Load the SCSI parity state machine with the address of the parity lookup table.
  125. // Also sets up DMA channels B and C
  126. static void config_parity_sm_for_write()
  127. {
  128. // Load base address to state machine register X
  129. uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];
  130. assert((addrbase & 0x1FF) == 0);
  131. pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);
  132. pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);
  133. pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));
  134. pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));
  135. // DMA channel B will copy addresses from parity PIO to DMA channel C read address register.
  136. // It is triggered by the parity SM RX FIFO request
  137. dma_channel_configure(SCSI_DMA_CH_B,
  138. &g_scsi_dma.dmacfg_write_chB,
  139. &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,
  140. &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
  141. 1, true);
  142. // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.
  143. // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.
  144. dma_channel_configure(SCSI_DMA_CH_C,
  145. &g_scsi_dma.dmacfg_write_chC,
  146. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  147. NULL,
  148. 1, false);
  149. }
  150. static void start_dma_write()
  151. {
  152. if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
  153. {
  154. // Buffer has been fully processed, swap it
  155. g_scsi_dma.dma_bytes = 0;
  156. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  157. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  158. g_scsi_dma.next_app_buf = 0;
  159. g_scsi_dma.next_app_bytes = 0;
  160. }
  161. // Check if we are all done.
  162. // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()
  163. // or back to WRITE in startWrite().
  164. uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
  165. if (bytes_to_send == 0)
  166. {
  167. g_scsi_dma_state = SCSIDMA_WRITE_DONE;
  168. return;
  169. }
  170. uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  171. g_scsi_dma.dma_bytes += bytes_to_send;
  172. // Start DMA from current buffer to parity generator
  173. dma_channel_configure(SCSI_DMA_CH_A,
  174. &g_scsi_dma.dmacfg_write_chA,
  175. &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
  176. src_buf,
  177. bytes_to_send,
  178. true
  179. );
  180. }
  181. void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
  182. {
  183. // Any read requests should be matched with a stopRead()
  184. assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);
  185. uint32_t status = save_and_disable_interrupts();
  186. if (g_scsi_dma_state == SCSIDMA_WRITE)
  187. {
  188. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  189. {
  190. // Combine with currently running request
  191. g_scsi_dma.app_bytes += count;
  192. count = 0;
  193. }
  194. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  195. {
  196. // Combine with queued request
  197. g_scsi_dma.next_app_bytes += count;
  198. count = 0;
  199. }
  200. else if (!g_scsi_dma.next_app_buf)
  201. {
  202. // Add as queued request
  203. g_scsi_dma.next_app_buf = (uint8_t*)data;
  204. g_scsi_dma.next_app_bytes = count;
  205. count = 0;
  206. }
  207. }
  208. restore_interrupts_from_disabled(status);
  209. // Check if the request was combined
  210. if (count == 0) return;
  211. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
  212. {
  213. // Wait for previous request to finish
  214. scsi_accel_rp2040_finishWrite(resetFlag);
  215. if (*resetFlag)
  216. {
  217. return;
  218. }
  219. }
  220. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  221. g_scsi_dma_state = SCSIDMA_WRITE;
  222. g_scsi_dma.app_buf = (uint8_t*)data;
  223. g_scsi_dma.app_bytes = count;
  224. g_scsi_dma.dma_bytes = 0;
  225. g_scsi_dma.next_app_buf = 0;
  226. g_scsi_dma.next_app_bytes = 0;
  227. if (must_reconfig_gpio)
  228. {
  229. SCSI_ENABLE_DATA_OUT();
  230. if (g_scsi_dma.syncOffset == 0)
  231. {
  232. // Asynchronous write
  233. config_parity_sm_for_write();
  234. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
  235. scsidma_config_gpio();
  236. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  237. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  238. }
  239. else
  240. {
  241. // Synchronous write
  242. // Data state machine writes data to SCSI bus and dummy bits to its RX fifo.
  243. // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.
  244. config_parity_sm_for_write();
  245. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
  246. pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
  247. scsidma_config_gpio();
  248. // Prefill RX fifo to set the syncOffset
  249. for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
  250. {
  251. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,
  252. pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  253. }
  254. // Fill the pacer TX fifo
  255. // DMA should start transferring only after ACK pulses are received
  256. for (int i = 0; i < 4; i++)
  257. {
  258. pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);
  259. }
  260. // Fill the pacer OSR
  261. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,
  262. pio_encode_mov(pio_osr, pio_null));
  263. // Start DMA transfer to move dummy bits to write pacer
  264. dma_channel_configure(SCSI_DMA_CH_D,
  265. &g_scsi_dma.dmacfg_write_chD,
  266. &SCSI_DMA_PIO->txf[SCSI_SYNC_SM],
  267. &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
  268. 0xFFFFFFFF,
  269. true
  270. );
  271. // Enable state machines
  272. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
  273. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  274. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  275. }
  276. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
  277. }
  278. start_dma_write();
  279. }
  280. bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
  281. {
  282. // Check if everything has completed
  283. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
  284. {
  285. return true;
  286. }
  287. if (!data)
  288. return false;
  289. // Check if this data item is still in queue.
  290. bool finished = true;
  291. uint32_t status = save_and_disable_interrupts();
  292. if (data >= g_scsi_dma.app_buf &&
  293. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
  294. (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)
  295. {
  296. finished = false; // In current transfer
  297. }
  298. else if (data >= g_scsi_dma.next_app_buf &&
  299. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  300. {
  301. finished = false; // In queued transfer
  302. }
  303. restore_interrupts_from_disabled(status);
  304. return finished;
  305. }
  306. // Once DMA has finished, check if all PIO queues have been drained
  307. static bool scsi_accel_rp2040_isWriteDone()
  308. {
  309. // Check if data is still waiting in PIO FIFO
  310. if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
  311. !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
  312. !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))
  313. {
  314. return false;
  315. }
  316. if (g_scsi_dma.syncOffset > 0)
  317. {
  318. // Check if all bytes of synchronous write have been acknowledged
  319. if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)
  320. return false;
  321. }
  322. else
  323. {
  324. // Check if state machine has written out its OSR
  325. if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)
  326. return false;
  327. }
  328. // Check if ACK of the final byte has finished
  329. if (SCSI_IN(ACK))
  330. return false;
  331. return true;
  332. }
  333. static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
  334. {
  335. // Wait for TX fifo to be empty and ACK to go high
  336. // For synchronous writes wait for all ACKs to be received also
  337. uint32_t start = millis();
  338. while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)
  339. {
  340. if ((uint32_t)(millis() - start) > 5000)
  341. {
  342. log("scsi_accel_rp2040_stopWrite() timeout");
  343. scsi_accel_log_state();
  344. *resetFlag = 1;
  345. break;
  346. }
  347. }
  348. dma_channel_abort(SCSI_DMA_CH_A);
  349. dma_channel_abort(SCSI_DMA_CH_B);
  350. dma_channel_abort(SCSI_DMA_CH_C);
  351. dma_channel_abort(SCSI_DMA_CH_D);
  352. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
  353. g_scsi_dma_state = SCSIDMA_IDLE;
  354. SCSI_RELEASE_DATA_REQ();
  355. scsidma_config_gpio();
  356. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  357. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  358. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  359. }
  360. void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
  361. {
  362. uint32_t start = millis();
  363. while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
  364. {
  365. if ((uint32_t)(millis() - start) > 5000)
  366. {
  367. log("scsi_accel_rp2040_finishWrite() timeout");
  368. scsi_accel_log_state();
  369. *resetFlag = 1;
  370. break;
  371. }
  372. if (g_scsi_dma_state == SCSIDMA_WRITE_DONE || *resetFlag)
  373. {
  374. // DMA done, wait for PIO to finish also and reconfig GPIO.
  375. scsi_accel_rp2040_stopWrite(resetFlag);
  376. }
  377. }
  378. }
  379. /****************************************/
  380. /* Accelerated reads from SCSI bus */
  381. /****************************************/
  382. // Load the SCSI read state machine with the address of the parity lookup table.
  383. // Also sets up DMA channels B, C and D
  384. static void config_parity_sm_for_read()
  385. {
  386. // Configure parity check state machine
  387. pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);
  388. // Load base address to state machine register X
  389. uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];
  390. assert((addrbase & 0x3FF) == 0);
  391. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);
  392. pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);
  393. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
  394. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));
  395. // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM
  396. if (g_scsi_dma.syncOffset > 0)
  397. {
  398. pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
  399. }
  400. // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.
  401. dma_channel_configure(SCSI_DMA_CH_B,
  402. &g_scsi_dma.dmacfg_read_chB,
  403. &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
  404. NULL,
  405. 1, false);
  406. // DMA channel C will copy addresses from data PIO to DMA channel B read address register.
  407. // It is triggered by the data SM RX FIFO request.
  408. // This triggers channel B by writing to READ_ADDR_TRIG
  409. // Channel B chaining re-enables this channel.
  410. dma_channel_configure(SCSI_DMA_CH_C,
  411. &g_scsi_dma.dmacfg_read_chC,
  412. &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,
  413. &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
  414. 1, true);
  415. if (g_scsi_dma.syncOffset == 0)
  416. {
  417. // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number
  418. // of bytes to transfer.
  419. static const uint32_t dummy = 0;
  420. dma_channel_configure(SCSI_DMA_CH_D,
  421. &g_scsi_dma.dmacfg_read_chD,
  422. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  423. &dummy,
  424. 0, false);
  425. }
  426. else
  427. {
  428. pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);
  429. // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO
  430. // to control the offset between REQ pulses sent and ACK pulses received.
  431. dma_channel_configure(SCSI_DMA_CH_D,
  432. &g_scsi_dma.dmacfg_read_chD,
  433. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  434. &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],
  435. 0, false);
  436. }
  437. // Clear PIO IRQ flag that is used to detect parity error
  438. SCSI_DMA_PIO->irq = 1;
  439. }
  440. static void start_dma_read()
  441. {
  442. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  443. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  444. pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);
  445. pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);
  446. if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
  447. {
  448. // Buffer has been fully processed, swap it
  449. g_scsi_dma.dma_bytes = 0;
  450. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  451. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  452. g_scsi_dma.next_app_buf = 0;
  453. g_scsi_dma.next_app_bytes = 0;
  454. }
  455. // Check if we are all done.
  456. // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()
  457. // or back to READ in startWrite().
  458. uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
  459. if (bytes_to_read == 0)
  460. {
  461. g_scsi_dma_state = SCSIDMA_READ_DONE;
  462. return;
  463. }
  464. if (g_scsi_dma.syncOffset == 0)
  465. {
  466. // Start sending dummy words to scsi_accel_read state machine
  467. dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
  468. }
  469. else
  470. {
  471. // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X
  472. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  473. hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
  474. pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);
  475. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
  476. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));
  477. hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
  478. // Prefill FIFOs to get correct syncOffset
  479. int prefill = 12 - g_scsi_dma.syncOffset;
  480. // Always at least 1 word to avoid race condition between REQ and ACK pulses
  481. if (prefill < 1) prefill = 1;
  482. // Up to 4 words in SCSI_DATA_SM TX fifo
  483. for (int i = 0; i < 4 && prefill > 0; i++)
  484. {
  485. pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
  486. prefill--;
  487. }
  488. // Up to 8 words in SCSI_SYNC_SM RX fifo
  489. for (int i = 0; i < 8 && prefill > 0; i++)
  490. {
  491. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  492. prefill--;
  493. }
  494. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));
  495. // Start transfers
  496. dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
  497. }
  498. // Start DMA to fill the destination buffer
  499. uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  500. g_scsi_dma.dma_bytes += bytes_to_read;
  501. dma_channel_configure(SCSI_DMA_CH_A,
  502. &g_scsi_dma.dmacfg_read_chA,
  503. dest_buf,
  504. &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
  505. bytes_to_read,
  506. true
  507. );
  508. // Ready to start the data and parity check state machines
  509. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  510. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  511. if (g_scsi_dma.syncOffset > 0)
  512. {
  513. // Start sending REQ pulses
  514. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
  515. }
  516. }
  517. void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
  518. {
  519. // Any write requests should be matched with a stopWrite()
  520. assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);
  521. uint32_t status = save_and_disable_interrupts();
  522. if (g_scsi_dma_state == SCSIDMA_READ)
  523. {
  524. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  525. {
  526. // Combine with currently running request
  527. g_scsi_dma.app_bytes += count;
  528. count = 0;
  529. }
  530. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  531. {
  532. // Combine with queued request
  533. g_scsi_dma.next_app_bytes += count;
  534. count = 0;
  535. }
  536. else if (!g_scsi_dma.next_app_buf)
  537. {
  538. // Add as queued request
  539. g_scsi_dma.next_app_buf = (uint8_t*)data;
  540. g_scsi_dma.next_app_bytes = count;
  541. count = 0;
  542. }
  543. }
  544. restore_interrupts_from_disabled(status);
  545. // Check if the request was combined
  546. if (count == 0) return;
  547. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)
  548. {
  549. // Wait for previous request to finish
  550. scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);
  551. if (*resetFlag)
  552. {
  553. return;
  554. }
  555. }
  556. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  557. g_scsi_dma_state = SCSIDMA_READ;
  558. g_scsi_dma.app_buf = (uint8_t*)data;
  559. g_scsi_dma.app_bytes = count;
  560. g_scsi_dma.dma_bytes = 0;
  561. g_scsi_dma.next_app_buf = 0;
  562. g_scsi_dma.next_app_bytes = 0;
  563. if (must_reconfig_gpio)
  564. {
  565. config_parity_sm_for_read();
  566. scsidma_config_gpio();
  567. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
  568. }
  569. start_dma_read();
  570. }
  571. bool scsi_accel_rp2040_isReadFinished(const uint8_t* data)
  572. {
  573. // Check if everything has completed
  574. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)
  575. {
  576. return true;
  577. }
  578. if (!data)
  579. return false;
  580. // Check if this data item is still in queue.
  581. bool finished = true;
  582. uint32_t status = save_and_disable_interrupts();
  583. if (data >= g_scsi_dma.app_buf &&
  584. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
  585. (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)
  586. {
  587. finished = false; // In current transfer
  588. }
  589. else if (data >= g_scsi_dma.next_app_buf &&
  590. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  591. {
  592. finished = false; // In queued transfer
  593. }
  594. restore_interrupts_from_disabled(status);
  595. return finished;
  596. }
  597. static void scsi_accel_rp2040_stopRead()
  598. {
  599. dma_channel_abort(SCSI_DMA_CH_A);
  600. dma_channel_abort(SCSI_DMA_CH_B);
  601. dma_channel_abort(SCSI_DMA_CH_C);
  602. dma_channel_abort(SCSI_DMA_CH_D);
  603. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
  604. g_scsi_dma_state = SCSIDMA_IDLE;
  605. SCSI_RELEASE_DATA_REQ();
  606. scsidma_config_gpio();
  607. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  608. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  609. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  610. }
  611. void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
  612. {
  613. uint32_t start = millis();
  614. const uint8_t *query_addr = (data ? (data + count - 1) : NULL);
  615. while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)
  616. {
  617. if ((uint32_t)(millis() - start) > 5000)
  618. {
  619. log("scsi_accel_rp2040_finishRead timeout");
  620. scsi_accel_log_state();
  621. *resetFlag = 1;
  622. break;
  623. }
  624. }
  625. if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)
  626. {
  627. // This was last buffer, release bus
  628. scsi_accel_rp2040_stopRead();
  629. }
  630. // Check if any parity errors have been detected during the transfer so far
  631. if (SCSI_DMA_PIO->irq & 1)
  632. {
  633. debuglog("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");
  634. *parityError = true;
  635. }
  636. }
  637. /*******************************************************/
  638. /* Initialization functions common to read/write */
  639. /*******************************************************/
  640. static void scsi_dma_irq()
  641. {
  642. #ifndef ENABLE_AUDIO_OUTPUT
  643. dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
  644. #else
  645. // see audio.h for whats going on here
  646. if (dma_hw->intr & (1 << SCSI_DMA_CH_A)) {
  647. dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
  648. } else {
  649. audio_dma_irq();
  650. return;
  651. }
  652. #endif
  653. scsidma_state_t state = g_scsi_dma_state;
  654. if (state == SCSIDMA_WRITE)
  655. {
  656. // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE
  657. start_dma_write();
  658. }
  659. else if (state == SCSIDMA_READ)
  660. {
  661. // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE
  662. start_dma_read();
  663. }
  664. }
  665. // Select GPIO from PIO peripheral or from software controlled SIO
  666. static void scsidma_config_gpio()
  667. {
  668. if (g_scsi_dma_state == SCSIDMA_IDLE)
  669. {
  670. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  671. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  672. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  673. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  674. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  675. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  676. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  677. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  678. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  679. iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_SIO;
  680. }
  681. else if (g_scsi_dma_state == SCSIDMA_WRITE)
  682. {
  683. // Make sure the initial state of all pins is high and output
  684. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.SCSI_ACCEL_PINMASK);
  685. // Binary of 0x3FF is is 0 0 1 1 11111111
  686. // ? A R P DBP
  687. // A = ACK, R = REQ, DBP are the data pins
  688. // REQ internal state needs to be set 'high'
  689. // 100000010000000000111111111
  690. // Probably right to left here, so 0 - 9 are set 'high' and 10/11 are set 'low'
  691. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, true);
  692. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.OUT_REQ, 1, true);
  693. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
  694. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
  695. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
  696. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
  697. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
  698. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
  699. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
  700. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
  701. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
  702. iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  703. }
  704. else if (g_scsi_dma_state == SCSIDMA_READ)
  705. {
  706. if (g_scsi_dma.syncOffset == 0)
  707. {
  708. // Asynchronous read
  709. // Data bus as input, REQ pin as output
  710. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.SCSI_ACCEL_PINMASK);
  711. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
  712. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.OUT_REQ, 1, true);
  713. }
  714. else
  715. {
  716. // Synchronous read, REQ pin is written by SYNC_SM
  717. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, scsi_pins.SCSI_ACCEL_PINMASK);
  718. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
  719. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, scsi_pins.OUT_REQ, 1, true);
  720. }
  721. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  722. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  723. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  724. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  725. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  726. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  727. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  728. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  729. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  730. iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  731. }
  732. }
  733. void scsi_accel_rp2040_init()
  734. {
  735. g_scsi_dma_state = SCSIDMA_IDLE;
  736. scsidma_config_gpio();
  737. if (g_channels_claimed) {
  738. // Un-claim all SCSI state machines
  739. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_PARITY_SM);
  740. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_DATA_SM);
  741. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_SYNC_SM);
  742. // Remove all SCSI programs
  743. pio_remove_program(SCSI_DMA_PIO, &scsi_parity_program, g_scsi_dma.pio_offset_parity);
  744. pio_remove_program(SCSI_DMA_PIO, &scsi_accel_async_write_program, g_scsi_dma.pio_offset_async_write);
  745. pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program, g_scsi_dma.pio_offset_sync_write_pacer);
  746. pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_program, g_scsi_dma.pio_offset_sync_write);
  747. pio_remove_program(SCSI_DMA_PIO, &scsi_accel_read_program, g_scsi_dma.pio_offset_read);
  748. pio_remove_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program, g_scsi_dma.pio_offset_sync_read_pacer);
  749. pio_remove_program(SCSI_DMA_PIO, &scsi_read_parity_program, g_scsi_dma.pio_offset_read_parity);
  750. // Un-claim all SCSI DMA channels
  751. dma_channel_unclaim(SCSI_DMA_CH_A);
  752. dma_channel_unclaim(SCSI_DMA_CH_B);
  753. dma_channel_unclaim(SCSI_DMA_CH_C);
  754. dma_channel_unclaim(SCSI_DMA_CH_D);
  755. // Set flag to re-initialize SCSI PIO system
  756. g_channels_claimed = false;
  757. }
  758. if (!g_channels_claimed) {
  759. // Mark channels as being in use, unless it has been done already
  760. pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);
  761. pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);
  762. pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);
  763. dma_channel_claim(SCSI_DMA_CH_A);
  764. dma_channel_claim(SCSI_DMA_CH_B);
  765. dma_channel_claim(SCSI_DMA_CH_C);
  766. dma_channel_claim(SCSI_DMA_CH_D);
  767. g_channels_claimed = true;
  768. }
  769. // Parity lookup generator
  770. g_scsi_dma.pio_offset_parity = pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);
  771. g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);
  772. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);
  773. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);
  774. // Asynchronous SCSI write
  775. g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);
  776. g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
  777. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
  778. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, scsi_pins.OUT_REQ);
  779. sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
  780. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
  781. // Synchronous SCSI write pacer / ACK handler
  782. g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program);
  783. g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
  784. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
  785. // Synchronous SCSI data writer
  786. g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
  787. g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
  788. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
  789. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, scsi_pins.OUT_REQ);
  790. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
  791. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
  792. // Asynchronous / synchronous SCSI read
  793. g_scsi_dma.pio_offset_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_read_program);
  794. g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);
  795. sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);
  796. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, scsi_pins.OUT_REQ);
  797. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);
  798. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);
  799. // Synchronous SCSI read pacer
  800. g_scsi_dma.pio_offset_sync_read_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);
  801. g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);
  802. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, scsi_pins.OUT_REQ);
  803. // Read parity check
  804. g_scsi_dma.pio_offset_read_parity = pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);
  805. g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);
  806. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);
  807. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);
  808. // Create DMA channel configurations so they can be applied quickly later
  809. // For write to SCSI BUS:
  810. // Channel A: Bytes from RAM to scsi_parity PIO
  811. dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
  812. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
  813. channel_config_set_read_increment(&cfg, true);
  814. channel_config_set_write_increment(&cfg, false);
  815. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));
  816. g_scsi_dma.dmacfg_write_chA = cfg;
  817. // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
  818. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
  819. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  820. channel_config_set_read_increment(&cfg, false);
  821. channel_config_set_write_increment(&cfg, false);
  822. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
  823. g_scsi_dma.dmacfg_write_chB = cfg;
  824. // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
  825. // When done, chain to channel B
  826. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
  827. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
  828. channel_config_set_read_increment(&cfg, false);
  829. channel_config_set_write_increment(&cfg, false);
  830. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
  831. channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);
  832. g_scsi_dma.dmacfg_write_chC = cfg;
  833. // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits
  834. // from first state machine to second one.
  835. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
  836. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  837. channel_config_set_read_increment(&cfg, false);
  838. channel_config_set_write_increment(&cfg, false);
  839. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));
  840. g_scsi_dma.dmacfg_write_chD = cfg;
  841. // For read from SCSI BUS:
  842. // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer
  843. // This takes the bottom 8 bits which is the data without parity bit.
  844. // Triggered by scsi_read_parity RX FIFO.
  845. cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
  846. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
  847. channel_config_set_read_increment(&cfg, false);
  848. channel_config_set_write_increment(&cfg, true);
  849. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
  850. g_scsi_dma.dmacfg_read_chA = cfg;
  851. // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
  852. // Triggered by channel C writing to READ_ADDR_TRIG
  853. // Re-enables channel C by chaining after done.
  854. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
  855. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
  856. channel_config_set_read_increment(&cfg, false);
  857. channel_config_set_write_increment(&cfg, false);
  858. channel_config_set_dreq(&cfg, DREQ_FORCE);
  859. channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);
  860. cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  861. g_scsi_dma.dmacfg_read_chB = cfg;
  862. // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register
  863. // A single transfer starts when PIO RX FIFO has data.
  864. // The DMA channel is re-enabled by channel B chaining.
  865. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
  866. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  867. channel_config_set_read_increment(&cfg, false);
  868. channel_config_set_write_increment(&cfg, false);
  869. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));
  870. g_scsi_dma.dmacfg_read_chC = cfg;
  871. // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words
  872. // from first state machine to second one to control the pace of data transfer.
  873. // In asynchronous mode this just transfers words to control the number of bytes.
  874. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
  875. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  876. channel_config_set_read_increment(&cfg, false);
  877. channel_config_set_write_increment(&cfg, false);
  878. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
  879. g_scsi_dma.dmacfg_read_chD = cfg;
  880. // Interrupts are used for data buffer swapping
  881. irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);
  882. irq_set_enabled(DMA_IRQ_0, true);
  883. }
  884. bool scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod)
  885. {
  886. if (g_scsi_dma_state != SCSIDMA_IDLE)
  887. {
  888. log("ERROR: SCSI DMA was in state ", (int)g_scsi_dma_state, " when changing sync mode, forcing bus reset");
  889. scsi_accel_log_state();
  890. return false;
  891. }
  892. if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
  893. {
  894. g_scsi_dma.syncOffset = syncOffset;
  895. g_scsi_dma.syncPeriod = syncPeriod;
  896. if (syncOffset > 0)
  897. {
  898. // Set up offset amount to PIO state machine configs.
  899. // The RX fifo of scsi_sync_write has 4 slots.
  900. // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
  901. // to act as a divider. This allows offsets 1 to 128 bytes.
  902. // SCSI2SD code currently only uses offsets up to 15.
  903. if (syncOffset <= 4)
  904. {
  905. g_scsi_dma.syncOffsetDivider = 1;
  906. g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
  907. }
  908. else if (syncOffset <= 8)
  909. {
  910. g_scsi_dma.syncOffsetDivider = 2;
  911. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
  912. }
  913. else if (syncOffset <= 16)
  914. {
  915. g_scsi_dma.syncOffsetDivider = 4;
  916. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
  917. }
  918. else
  919. {
  920. g_scsi_dma.syncOffsetDivider = 4;
  921. g_scsi_dma.syncOffsetPreload = 0;
  922. }
  923. // To properly detect when all bytes have been ACKed,
  924. // we need at least one vacant slot in the FIFO.
  925. if (g_scsi_dma.syncOffsetPreload > 3)
  926. g_scsi_dma.syncOffsetPreload = 3;
  927. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
  928. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
  929. // Set up the timing parameters to PIO program
  930. // The scsi_sync_write PIO program consists of three instructions.
  931. // The delays are in clock cycles, each taking 8 ns.
  932. // delay0: Delay from data write to REQ assertion
  933. // delay1: Delay from REQ assert to REQ deassert
  934. // delay2: Delay from REQ deassert to data write
  935. int delay0, delay1, delay2;
  936. int totalDelay = syncPeriod * 4 / 8;
  937. if (syncPeriod <= 25)
  938. {
  939. // Fast SCSI timing: 30 ns assertion period, 25 ns skew delay
  940. // The hardware rise and fall time require some extra delay,
  941. // the values below are tuned based on oscilloscope measurements.
  942. delay0 = 3;
  943. delay1 = 5;
  944. delay2 = totalDelay - delay0 - delay1 - 3;
  945. if (delay2 < 0) delay2 = 0;
  946. if (delay2 > 15) delay2 = 15;
  947. }
  948. else
  949. {
  950. // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
  951. delay0 = 6;
  952. delay1 = 12;
  953. delay2 = totalDelay - delay0 - delay1 - 3;
  954. if (delay2 < 0) delay2 = 0;
  955. if (delay2 > 15) delay2 = 15;
  956. }
  957. // Patch the delay values into the instructions in scsi_sync_write.
  958. // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
  959. uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
  960. uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
  961. uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
  962. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
  963. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
  964. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
  965. // And similar patching for scsi_sync_read_pacer
  966. int rdelay2 = totalDelay - delay1 - 2;
  967. if (rdelay2 > 15) rdelay2 = 15;
  968. if (rdelay2 < 5) rdelay2 = 5;
  969. uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2);
  970. uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1);
  971. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;
  972. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;
  973. }
  974. }
  975. return true;
  976. }